# **Digital Oscilloscopes**

**Programming Guide** 

PG01-E02D

# **Copyright and Declaration**

Copyright SIGLENT TECHNOLOGIES CO., LTD. All Rights Reserved.

### Trademark Information

SIGLENT is the registered trademark of SIGLENT TECHNOLOGIES CO., LTD.

### Declaration

SIGLENT products are protected by patent law in and outside of P.R.C.

**SIGLENT** reserves the right to modify or change parts of or all the specifications or pricing policies at company's sole decision.

Information in this publication replaces all previously corresponding material.

Any way of copying, extracting or translating the contents of this manual is not allowed without the permission of **SIGLENT**.

#### **Product Certification**

**SIGLENT** guarantees this product conforms to the national and industrial stands in China and other international stands conformance certification is in progress.

### **Contact Us**

If you have any problem or requirement when using our products, please contact SIGLENTTECHNOLOGIES CO., LTD Add : 3//F, Bldg No.4, Antongda Industrial Zone, 3rd Liuxian Road, Bao'an District, Shenzhen, 518101,P.R.China Tel : 400-878-0807 E-mail : sales@siglent.com http://www.siglent.com



# **Version Declaration**

This chapter declares the modifications of command in the most recent release of the programming guide version.

# Version E02A at Introduction

This version, as the second new version, regulates all the currently available commands. Some of the commands vary between series, and these will be annotated in the description of command.

The following are the main revisions:

- Delete the Table of Commands & Queries, and all the instructions are classified according to the functional modules.
- Removed incorrect instructions, added instructions for WGEN and DIGITAL modules.
- Add two new communication features: Telnet and Socket, visible in "Programming Overview-Remote Control".
- Detailed programming instances for instructions (WF?/SCDP) to make it easier to understand.
- Support obtaining waveform data of Digital channel and Math.
- For comparison with the previous programming guide, differences have been listed in "Obsolete Commands for Old Models".

# Version E02B at Introduction

The following are the main revisions:

- Adding commands for serial trigger and decode.
- Corrected the error description in the document.

# Version E02C at Introduction

The following are the main revisions:



- Update the description and example of PNSU.
- Update the notes on WF.
- Increase the spacing between instruction keywords and parameters.
- Add measurement commands, such as statistics and gate measurement.
- Add education mode command, and classify it under system function.
- Corrected the error description in the document.

## Version E02D at Introduction

The following are the main revisions:

- Make a distinction between different models of AWG commands.
- Update the example of WF command.



# Content

| COPYRIGHT AND DECLARATION         | 2   |
|-----------------------------------|-----|
| VERSION DECLARATION               | 3   |
| Version E02A at Introduction      | 3   |
| VERSION E02B AT INTRODUCTION      | 3   |
| CONTENT                           | 5   |
| PROGRAMMING OVERVIEW              | 7   |
| ESTABLISHING COMMUNICATIONS       | 7   |
| Install NI-VISA                   | 7   |
| Connect the Instrument            |     |
| REMOTE CONTROL                    | 12  |
| User-defined Programming          |     |
| Send SCPI Commands via NI-MAX     |     |
| Using SCPI with Telnet            |     |
| Using SCPI with Sockets           |     |
| INTRODUCTION TO THE SCPI LANGUAGE | 15  |
| ABOUT COMMANDS & QUERIES          | 15  |
| DESCRIPTION                       | 15  |
| USAGE                             | 15  |
| COMMAND NOTATION                  | 16  |
| COMMANDS & QUERIES                | 17  |
| COMMON (*) COMMANDS               |     |
| COMM_HEADER COMMANDS              | 22  |
| ACQUIRE COMMANDS                  | 24  |
| AUTOSET COMMANDS                  |     |
| CHANNEL COMMANDS                  | 40  |
| CURSOR COMMANDS                   | 51  |
| DECODE COMMANDS                   | 59  |
| DIGITAL COMMANDS                  | 72  |
| DISPLAY COMMANDS                  |     |
| HISTORY COMMANDS                  |     |
| MATH COMMANDS                     |     |
| MEASURE COMMANDS                  | 113 |



| PASS/FAIL COMMANDS                    | 135 |
|---------------------------------------|-----|
| PRINT COMMANDS                        | 148 |
| RECALL COMMANDS                       | 150 |
| REFERENCE COMMANDS                    | 154 |
| SAVE COMMANDS                         | 165 |
| STATUS COMMANDS                       | 174 |
| SYSTEM COMMANDS                       | 177 |
| TIMEBASE COMMANDS                     | 183 |
| TRIGGER COMMANDS                      | 191 |
| SERIAL TRIGGER COMMANDS               | 209 |
| WAVEFORM COMMANDS                     | 262 |
| WGEN COMMANDS                         | 275 |
| OBSOLETE COMMANDS FOR OLD MODELS      | 291 |
| PROGRAMMING EXAMPLES                  | 313 |
| VISA EXAMPLES                         | 314 |
| VC++ Example                          | 314 |
| VB Example                            | 321 |
| MATLAB Example                        | 326 |
| LabVIEW Example                       | 328 |
| C# Example                            | 331 |
| EXAMPLES OF USING SOCKETS             | 333 |
| Python Example                        | 333 |
| C Example                             | 336 |
| COMMON COMMAND EXAMPLES               | 338 |
| Read Waveform Data (WF) Example       | 338 |
| Read Waveform Data of Digital Example | 339 |
| Screen Dump (SCDP) Example            | 341 |
| INDEX                                 | 343 |



# **Programming Overview**

This chapter introduces how to build communication between the instrument and the PC. It also introduces how to configure a system for remote instrument control.

By using USB and LAN interfaces, in combination with NI-VISA and programming languages, users can remotely control the instruments. Through LAN interface, VXI-11, Sockets and Telnet protocols can be used to communicate with the instruments.

# **Establishing Communications**

## Install NI-VISA

Before programming, you need to install the National Instruments NI-VISA library, which you can download from the National Instruments web site.

Currently, NI-VISA is packaged in two versions: a full version and a Run-Time Engine version. The full version includes the NI device drivers and a tool named NI MAX which is a user interface to control and test remotely connected devices. The Run-Time Engine is recommended, as it is a much smaller download than the full version and includes the necessary tools for basic communication to instruments.

For example, you can get the NI-VISA 5.4 full version from: http://www.ni.com/download/ni-visa-5.4/4230/en/.

You also can download NI-VISA Run-Time Engine 5.4 to your PC and install it as the default selection. Its installation process is similar with the full version.

After you downloaded the file, follow these steps to install NI-VISA (The full version of NI-VISA 5.4 is used in this example. Newer versions are likely, and should be compatible with SIGLENT instrumentation. Download the latest version available for the operating system being used by the controlling computer):

a. Double click the visa540\_full.exe, dialog shown as below:



| VinZip Self-Extractor - visa540_                                                       | full 🔀             |
|----------------------------------------------------------------------------------------|--------------------|
| To unzip all files in visa540_full.exe to the specified folder press the Unzip button. | <u>U</u> nzip      |
| Unzip to <u>f</u> older:                                                               | Run <u>W</u> inZip |
| ruments Downloads\NI-VISA\5.4 Browse                                                   | <u>C</u> lose      |
| verwrite files without prompting                                                       | About              |
| ✓ When done unzipping open:<br>.\setup.exe                                             | <u>H</u> elp       |
|                                                                                        |                    |

b. Click Unzip, the installation process will automatically launch after unzipping files. If your computer needs to install .NET Framework 4, it may auto start.

| 🐺 NI-VISA 5.4                                                                                                                                                                                                                                                         |                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|                                                                                                                                                                                                                                                                       | ni.com/visa                        |
| NI-VISA <sup>™</sup>                                                                                                                                                                                                                                                  | Haffe                              |
| National Instruments VISA Software                                                                                                                                                                                                                                    |                                    |
| Exit all applications before running this installer.<br>Disabling virus scanning applications may improve installation sper<br>This program is subject to the accompanying License Agreement(<br>National Instruments Corporation is an authorized distributor of Mic | ed.<br>s).<br>crosoft Silverlight. |
|                                                                                                                                                                                                                                                                       |                                    |
| © 1995–2013 National Instruments. All rights reserved.                                                                                                                                                                                                                | INSTRUMENTS                        |
| << <u>B</u> ack                                                                                                                                                                                                                                                       | Next >> Cancel                     |

c. The NI-VISA installing dialog is shown above. Click Next to start the installation process.



| 🖷 NI-VISA 5.4                                                                                                                             |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Destination Directory<br>Select the primary installation directory.                                                                       |                             |
| National Instruments software will be installed in a subfolder of the fo<br>different folder, click the Browse button and select another. | Illowing. To install into a |
|                                                                                                                                           |                             |
| Destination Directory<br>C:\Program Files\National Instruments\                                                                           | Browse                      |
|                                                                                                                                           | <u>Next&gt;&gt;</u>         |

d. Set the install path, default path is "C:\Program Files\National Instruments\", you can change it. Click Next, dialog shown as above.

| 🖷 NI-VISA 5.4                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Features<br>Select the features to install.                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
| NI-VISA 5.4     Configuration Support     Configuration Support     Configuration Support     Development Support     Remote Server     Real-Time Support     Vindows Mobile/CE Support     Vindows Mobile/CE Support     NI Instrument I/O Assistant 2.8.2     NI System Configuration 5.5.0     NI Measurement & Automation Explorer 5.5     NI-1588 Configuration 1.3.0 | National Instruments VISA driver version 5.4. VISA<br>provides an API for controlling VAI, GPIB, Serial, PAI<br>and other types of instruments. |
| < · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                 |
| Directory for NI-VISA 5.4                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 |
| C:\Program Files\IVI Foundation\VISA\                                                                                                                                                                                                                                                                                                                                      | Browse                                                                                                                                          |
| Restore Feature Defaults Disk Cost                                                                                                                                                                                                                                                                                                                                         | << <u>B</u> ack <u>Next &gt;&gt;</u> <u>C</u> ancel                                                                                             |

e. Click Next twice, in the License Agreement dialog, select the "I accept the above 2 License Agreement(s).",and click Next, dialog shown as below:



| 🦷 NI-VISA 5.4                                                                                                                                                                                                                                                                      |                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Start Installation<br>Review the following summary before continuing.                                                                                                                                                                                                              |                                |
| Adding or Changing         • NI-VISA 5.4         Run Time Support         Configuration Support         Development Support         Remote Server         • NI System Configuration 5.5.0         • NI Measurement & Automation Explorer 5.5         • NI-1588 Configuration 1.3.0 |                                |
| Click the Next button to begin installation. Click the Back button to change the ins                                                                                                                                                                                               | stallation settings.           |
| <u>S</u> ave File) << <u>B</u> ack                                                                                                                                                                                                                                                 | <u>N</u> ext >> <u>C</u> ancel |

f. Click Next to begin installation.

| 🖷 NI-VISA 5.4                                                                                                                                                                                             |                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Installation Complete                                                                                                                                                                                     | NATIONAL<br>INSTRUMENTS                                                                                                                                      |
| Installation complete! You might be prompted<br>The best way to explore the new features is<br>sessions to the new resource types and look<br>attributes.<br>You can use Measurement and Automation Explo | to reboot your machine.<br>to use the VISA Interactive Control to open<br>at available operations, events, and<br>rer to configure the settings for NI-VISA. |
|                                                                                                                                                                                                           |                                                                                                                                                              |
|                                                                                                                                                                                                           | << Back Next >> Einish                                                                                                                                       |

g. Now the installation is complete. Reboot your PC.

### Connect the Instrument

Depending on the specific model, your oscilloscope may be able to communicate with a PC through the USB or LAN interface.



Connect the instrument and the USB Host interface of the PC using a USB cable. Assuming your PC is already turned on, turn on your oscilloscope, and then the PC will display the "Device Setup" screen as it automatically installs the device driver as shown below.



Wait for the installation to complete and then proceed to the next step.



# **Remote Control**

## **User-defined Programming**

Users can use SCPI commands via a computer to program and control the digital oscilloscope. For details, refer to the introductions in "Programming Examples".

## Send SCPI Commands via NI-MAX

NI-Measurement and Automation eXplorer (NI-MAX) is a program created and maintained by National Instruments. It provides a basic remote control interface for VXI, LAN, USB, GPIB, and Serial communications. It is a utility that enables you to send commands one-at-a-time and also retrieve data from connected devices. It is a great tool for troubleshooting and testing command sequences. The oscilloscopes can be controlled remotely by sending SCPI commands via NI-MAX.

## Using SCPI with Telnet

Telnet provides a means of communicating with the oscilloscopes over a LAN connection. The Telnet protocol sends SCPI commands to the oscilloscopes from a PC and is similar to communicating with the oscilloscopes over USB. It sends and receives information interactively: one command at a time. Windows operating systems use a command prompt style interface for the Telnet client. The steps are as follows:

- 1. On your PC, click Start > All Programs > Accessories > Command Prompt.
- 2. At the command prompt, type in *telnet*.
- 3. Press the Enter key. The Telnet display screen will be displayed.





4. At the Telnet command line, type:

open XXX.XXX.XXX.XXX 5024

Where *XXX.XXX.XXX.XXX* is the instrument's IP address and 5024 is the port. You should see a response similar to the following:

| 📕 Teln  | et | 10.1 | 1.25. | 232               |          |         |      | - 🗆 🗙    |
|---------|----|------|-------|-------------------|----------|---------|------|----------|
| Welcome | to | the  | SCPI  | 232<br>instrument | 'Siglent | SDS1204 | X—E' |          |
| 4       |    |      |       |                   |          |         |      | <b>▼</b> |

5. At the SCPI> prompt, input the SCPI commands such as *\*IDN?* to return the company name, model number, serial number, and firmware version number.





6. To exit the SCPI> session, press the Ctrl+] keys simultaneously.

7. Type *quit* at the prompt or close the Telnet window to close the connection to the instrument and exit Telnet.

## Using SCPI with Sockets

Socket API can be used to control the SDS1000X-E series via LAN without installing any other libraries. This can reduce the complexity of programming.

| SOCKET ADDRESS | IP address + port number |
|----------------|--------------------------|
| IP ADDRESS     | SDS IP address           |
| PORT NUMBER    | 5025                     |

Please see section "Examples of Using Sockets" for the details.



# Introduction to the SCPI Language

# About Commands & Queries

This section lists and describes the remote control commands and queries recognized by the instrument. All commands and queries can be executed in either local or remote state.

The description for each command or query, with syntax and other information, begins on a new page. The name (header) is given in both long and short form at the top of the page, and the subject is indicated as a command or query or both.

The commands are given in long format for the "COMMAND SYNTAX" and "QUERY SYNTAX" sections and they are used in a short form for the "EXAMPLE".

Queries perform actions such as obtaining information, and are recognized by the question mark (?) following the header.

# Description

In the description, a brief explanation of the function performed is given. This is followed by a presentation of the formal syntax, with the header given in upper case characters and the short form derived from it. Where applicable, the syntax of the query is given with the format of its response.

# Usage

The commands and queries listed here can be used for SIGLENTs Digital Oscilloscope Series as shown below. Models are arranged according to their initial release dates.

| Applicable to the following models |               |  |  |
|------------------------------------|---------------|--|--|
| SDS1000CFL                         | non-SPO model |  |  |
| SDS1000A                           | non-SPO model |  |  |
| SDS1000CML+/CNL+/DL+/E+/F+         | non-SPO model |  |  |
| SDS2000/2000X                      | SPO model     |  |  |
| SDS1000X/1000X+                    | SPO model     |  |  |
| SDS1000X-E/X-C                     | SPO model     |  |  |



| SDS2000X-E | SPO model |
|------------|-----------|
| SDS1000X-U | SPO model |

What is an SPO model?

Oscilloscope models that have the SPO designation use SIGLENTs innovative waveform acquisition and graphics processing engine which supports high capture rate, multi-level intensity grading and color temperature display. SPO models also come with deep memory storage and the use of new digital trigger technology that supports rich precise trigger types.

## **Command Notation**

The following notations are used in the commands:

< > Angular brackets enclose words that are used as placeholders, of which there are two types: the header path and the data parameter of a command.

:= A colon followed by an equals sign separates a placeholder from the description of the type and range of values that may be used in a command instead of the placeholder.

{} Braces enclose a list of choices, one of which one must be made.

[] Square brackets enclose optional items.

An ellipsis indicates that the items both to its left and right may be repeated for a number of times.

As an example, consider the syntax notation for the command to set the vertical input sensitivity: <channel>:VOLT\_DIV <v\_gain> <channel>:={C1,C2,C3,C4} <v\_gain>:= 2 mV to 10 V

The first line shows the formal appearance of the command, with <channel> denoting the placeholder for the header path and <v\_gain> the placeholder for the data parameter specifying the desired vertical gain value. The second line indicates that one of four channels must be chosen for the header path. And the third explains that the actual vertical gain can be set to any value between 2 mV and 10 V.



# **Commands & Queries**

This chapter introduces each command subsystem of the SIGLENTs Digital Oscilloscope Series command set. The contents of this chapter are shown as below:

- COMMON (\*) Commands
- COMM\_HEADER Commands
- ACQUIRE Commands
- AUTOSET Commands
- CHANNEL Commands
- CURSOR Commands
- DIGITAL Commands
- DISPLAY Commands
- HISTORY Commands
- MATH Commands
- MEASURE Commands
- PASS/FAIL Commands
- PRINT Commands
- RECALL Commands
- REFERENCE Commands
- SAVE Commands
- STATUS Commands
- SYSTEM Commands
- TIMEBASE Commands
- TRIGGER Commands
- SERIAL TRIGGER Commands
- WGEN Commands
- Obsolete Commands for Old Models



# COMMON (\*) Commands

The IEEE 488.2 standard defines some general commands for querying the basic information of an instrument or performing common basic operations. These commands usually start with \*, and the command key length is 3 characters.

- \*IDN? (Identification Number)
- \* \*OPC (Operation Complete)
- \*RST (Reset)



| COMMON (*)      |                                                                                                                                      | *IDN?<br>Query                                                                                                    |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The *IDN? query identifies<br>software version. The response<br>fields providing information of<br>scope model, the serial number    | the instrument type and<br>e consists of four different<br>on the manufacturer, the<br>and the firmware revision. |
| QUERY SYNTAX    | *IDN?                                                                                                                                |                                                                                                                   |
| RESPONSE FORMAT | Siglent Teo<br>number>, <firmware></firmware>                                                                                        | chnologies, <model>,<serial< th=""></serial<></model>                                                             |
|                 | <model>:= the model number of<br/><serial number="">:= A 14-digit de<br/><firmware>:= the software revis</firmware></serial></model> | f the instrument<br>cimal code.<br>ion of the instrument                                                          |
| EXAMPLE         | The query identifies the instruction.<br>Command message:<br>*/DN?                                                                   | ument type and software                                                                                           |
|                 | Response message:<br><i>Siglent</i><br><i>E,SDS1EBAC0L0098,7.6.1.15</i>                                                              | Technologies,SDS1204X-                                                                                            |



| COMMON (*)      | *OPC<br>Command/Query                                                                                                                                    |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The *OPC command sets the operation complete bit in the Standard Event Status Register when all pending device operations have finished.                 |
|                 | The *OPC? query places an ASCII "1" in the output queue when all pending device operations have completed. The interface hangs until this query returns. |
| COMMAND SYNTAX  | *OPC                                                                                                                                                     |
| QUERY SYNTAX    | *OPC?                                                                                                                                                    |
| RESPONSE FORMAT | *OPC 1                                                                                                                                                   |



| COMMON (*)     | *RST<br>Command                                                                                            |
|----------------|------------------------------------------------------------------------------------------------------------|
| DESCRIPTION    | The *RST command initiates a device reset. This is the same as pressing <b>Default</b> on the front panel. |
| COMMAND SYNTAX | *RST                                                                                                       |
| EXAMPLE        | This example resets the oscilloscope.<br>Command message:<br><i>*RST</i>                                   |



# COMM\_HEADER Commands

CHDR



#### COMM\_HEADER

### COMM\_HEADER | CHDR Command/Query

DESCRIPTION The COMM\_HEADER command controls the way the oscilloscope formats response to queries. This command does not affect the interpretation of messages sent to the oscilloscope. Headers can be sent in their long or short form regardless of the CHDR setting.

Examples of the three response formats to "C1:VDIV?":

| CHDR  | RESPONSE              |
|-------|-----------------------|
| LONG  | C1:VOLT_DIV 1.00E+01V |
| SHORT | C1:VDIV 1.00E+01V     |
| OFF   | 1.00E+01              |

#### COMMAND SYNTAX

COMM\_HEADER <mode>

<mode>:= {SHORT,LONG,OFF}

•SHORT— response with the short form of the header word.

LONG— response with the long form of the header word.OFF— header is omitted from the response and units in

numbers are suppressed.

Note:

Default is the SHORT response format.

QUERY SYNTAX

COMM\_HEADER?

**RESPONSE FORMAT** 

EXAMPLE

COMM\_HEADER <mode>

The following command sets the response header format to SHORT. Command message: *CHDR SHORT* 



# **ACQUIRE** Commands

The ACQUIRE subsystem controls the way in which waveforms are acquired. These commands set the parameters for acquiring and storing data.

- ARM
- STOP
- ACQW
- AVGA
- MSIZ
- SAST?
- SARA?
- SANU?
- SXSA
- XYDS



| ACQUIRE        | ARM_ACQUISITION   ARM<br>Command                             |
|----------------|--------------------------------------------------------------|
| DESCRIPTION    | The ARM_ACQUISITION command starts a new signal acquisition. |
| COMMAND SYNTAX | ARM_ACQUISITION                                              |
| EXAMPLE        | The following steps show the effect of ARM.                  |
|                | Note:                                                        |
|                | INR bit 13 (8192) = Trigger is ready.                        |
|                | INR bit 0 (1) = New Signal Acquired.                         |
|                | Step 1: Set the trigger mode to single, and input a signal   |
|                | which can be triggered. Once triggered, you can see the      |
|                | state of acquisition changes to stop. Send the query.        |
|                | Query message:                                               |
|                | INR?                                                         |
|                | Response message:                                            |
|                | <i>INR 8193</i> (trigger ready)                              |
|                | Step 2: Send the query again to clear the register.          |
|                | Query message:                                               |
|                | INR?                                                         |
|                | Response message:                                            |
|                | INR 0                                                        |
|                | Step 3: Now, send the command to start a new signal          |
|                | acquisition.                                                 |
|                | Command message:                                             |
|                | ARM                                                          |
|                | Step 4: Send the query to see the effect of ARM.             |
|                | Query message:                                               |
|                | INR?                                                         |
|                | Response message:                                            |

25



### INR 8193

RELATED COMMANDS

STOP

TRMD



| ACQUIRE          | STOP<br>Command                                                                                              |
|------------------|--------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The STOP command stops the acquisition. This is the same as pressing the <b>Stop</b> key on the front panel. |
| COMMAND SYNTAX   | STOP                                                                                                         |
| EXAMPLE          | The following command stops the acquisition process.<br>Command message:<br><i>STOP</i>                      |
| RELATED COMMANDS | ARM<br>TRMD                                                                                                  |



| ACQUIRE        | ACQUIRE_WAY   ACQW<br>Command/Query                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION    | The ACQUIRE_WAY command specifies the acquisition mode.                                                                                                                                                                                                                                                                                                                                                             |
|                | The ACQUIRE_WAY? query returns the current acquisition mode.                                                                                                                                                                                                                                                                                                                                                        |
| COMMAND SYNTAX | ACQUIRE_WAY <mode>[,<time>]</time></mode>                                                                                                                                                                                                                                                                                                                                                                           |
|                | <mode>:={SAMPLING,PEAK_DETECT,AVERAGE,HIGH_<br/>RES}<br/><time>:={4,16,32,64,128,256,512,}</time></mode>                                                                                                                                                                                                                                                                                                            |
|                | <ul> <li>SAMPLING – sets the oscilloscope in the normal mode.</li> <li>PEAK_DETECT – sets the oscilloscope in the peak detect mode.</li> <li>AVERAGE – sets the oscilloscope in the averaging mode.</li> <li>HIGH_RES – sets the oscilloscope in the enhanced resolution mode (also known as smoothing). This is essentially a digital boxcar filter and is used to reduce noise at slower sweep speeds.</li> </ul> |
|                | Note:<br>•The [HIGH_RES] option is valid for SPO models. See<br>models on page 15.<br>• <time>:={4,16,32,64,128,256,512,} when <mode> =<br/>AVERAGE.</mode></time>                                                                                                                                                                                                                                                  |
|                | Options vary from models. See the data sheet or the acquire menu of the oscilloscope.                                                                                                                                                                                                                                                                                                                               |

QUERY SYNTAX

ACQUIRE\_WAY?



| RESPONSE FORMAT  | ACQUIRE_WAY <mode>[,<time>]</time></mode>                                                                                                      |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| EXAMPLE          | The following command sets the acquisition mode to average mode and also sets the average time to 16. Command message: <i>ACQW AVERAGE, 16</i> |
| RELATED COMMANDS | AVGA                                                                                                                                           |



| ACQUIRE          | AVERAGE_ACQUIRE   AVGA<br>Command/Query                                                                            |
|------------------|--------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The AVERAGE_ACQUIRE command selects the average times of average acquisition.                                      |
|                  | The AVERAGE_ACQUIRE? query returns the currently selected count value for average mode.                            |
| COMMAND SYNTAX   | AVERAGE_ACQUIRE <time></time>                                                                                      |
|                  | <time>:= {4,16,32,64,128,256,}</time>                                                                              |
|                  | Note:                                                                                                              |
|                  | Options of <time> vary from models. See the data sheet or the acquire menu of the oscilloscope for details.</time> |
| QUERY SYNTAX     | AVERAGE_ACQUIRE?                                                                                                   |
| RESPONSE FORMAT  | AVERAGE_ACQUIRE <time></time>                                                                                      |
| EXAMPLE          | The following command turns the average times of average acquisition to 16.<br>Command message:<br><i>AVGA 16</i>  |
| RELATED COMMANDS | ACQW                                                                                                               |



| ACQUIRE         | MEMORY_SIZE   MSIZ<br>Command/Query                                                                                                                                                                  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The MEMORY_SIZE command sets the maximum depth of memory.                                                                                                                                            |
|                 | The MEMORY_SIZE? query returns the maximum depth of memory.                                                                                                                                          |
| COMMAND SYNTAX  | MEMORY_SIZE <size></size>                                                                                                                                                                            |
|                 | <size>:={7K,70K,700K,7M} for non-interleaved mode.<br/>Non-interleaved means a single channel is active per A/D<br/>converter. Most oscilloscopes feature two channels per<br/>A/D converter.</size> |
|                 | <size>:={14K,140K,1.4M,14M} for interleave mode.<br/>Interleave mode means multiple active channels per A/D<br/>converter.</size>                                                                    |
|                 | Note:<br>Options of <size> vary from models. See the data sheet or<br/>the acquire menu of the oscilloscope for details.</size>                                                                      |
| QUERY SYNTAX    | MEMORY_SIZE?                                                                                                                                                                                         |
| RESPONSE FORMAT | MEMORY_SIZE <size></size>                                                                                                                                                                            |
| EXAMPLE         | The following command sets the maximum depth of memory to 14M in interleave mode.<br>Command message:<br>MSIZ 14M                                                                                    |



ACQUIRE SAMPLE\_STATUS? | SAST? Query DESCRIPTION The SAST? query returns the acquisition status of the scope. QUERY SYNTAX SAST? **RESPONSE FORMAT** SAST <status> EXAMPLE The following query returns the acquisition status of the scope. Query message: SAST? Response message: SAST Trig'd



### ACQUIRE

### SAMPLE\_RATE? | SARA?

Query

DESCRIPTION

The SARA? query returns the sample rate of the scope.

QUERY SYNTAX

SARA? DI:SARA?

DI – digital.

**RESPONSE FORMAT** 

SARA <value> DI:SARA <value>

| Model       | Format of <value></value>            |
|-------------|--------------------------------------|
| SDS1000X-E/ | Numerical value in E-notation with   |
| SDS2000X-E/ | SI unit, such as 5.00E+08Sa/s.       |
| SDS1000X-U  |                                      |
| others      | Numerical value with measurement     |
|             | unit and physical unit, such as 1.00 |
|             | GSa/s.                               |

EXAMPLE

•The following query returns the sample rate of the analog channel.

Query message:

SARA?

Response message:

SARA 5.00E+05Sa/s

•The following query returns the sample rate of the digital channel.

Query message:

DI:SARA?

Response message:

33

DI:SARA 5.00E+05Sa/s

Note:

The table shows the availability of "DI:SARA?" in each digital oscilloscope series.





| Model      | Valid? |
|------------|--------|
| SDS2000X   | no     |
| SDS1000X   | no     |
| SDS1000X-E | yes    |
| SDS2000X-E | yes    |



#### ACQUIRE

#### DESCRIPTION

The SANU? query returns the number of data points that the hardware will acquire from the input signal. The number of points acquired is based on the horizontal scale and memory/acquisition depth selections and cannot be directly set.

SAMPLE\_NUM? | SANU?

Query

### QUERY SYNTAX SANU? <channel>

<channel>:={C1,C2,C3,C4}

**RESPONSE FORMAT** 

SANU <value>

| Model         | Format of <value></value>          |
|---------------|------------------------------------|
| SDS1000X-E/   | Numerical value in E-notation with |
| SDS2000X-E/   | SI unit, such as 7.00E+05pts.      |
| SDS1000X-U    |                                    |
| SDS2000/2000X | Numerical value with measurement   |
| /1000X/1000X+ | unit and physical unit, such as    |
|               | 28Mpts.                            |
| others        | Numerical value, such as 1600.     |

EXAMPLE

The following query returns the number of sampled points available from last acquisition from Channel 2. Query message:

SANU? C2 Response message: SANU 7.00E+05pts



| ACQUIRE         | SINXX_SAMPLE   SXSA<br>Command/Query                                                                                 |
|-----------------|----------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The SINXX_SAMPLE command sets the way of interpolation.                                                              |
|                 | The SINXX_SAMPLE? query returns the way of interpolation.                                                            |
| COMMAND SYNTAX  | SINXX_SAMPLE <state></state>                                                                                         |
|                 | <state>:={ON,OFF}<br/>•ON — sine interpolation.<br/>•OFF — linear interpolation.</state>                             |
| QUERY SYNTAX    | SINXX_SAMPLE?                                                                                                        |
| RESPONSE FORMAT | SINXX_SAMPLE <state></state>                                                                                         |
| EXAMPLE         | The following command sets the way of the interpolation to sine interpolation.<br>Command message:<br><i>SXSA_ON</i> |


ACQUIRE XY\_DISPLAY | XYDS Command/Query The XY\_DISPLAY command enables or disables the DESCRIPTION display of XY mode. XY mode plots the voltage data of both channels with respect to one-another. For example, channel 1 vs. channel 2. This can be used to create lissajous curves. The standard display mode plots voltage data vs. time. The XY\_DISPLAY? query returns whether the XY format display is enabled. COMMAND SYNTAX XY\_DISPLAY <state> <state>:={ON,OFF} QUERY SYNTAX XY\_DISPLAY? **RESPONSE FORMAT** XY\_DISPLAY <state> **EXAMPLE** The following command enables the XY format. Command message: XYDS ON



# **AUTOSET Commands**

The AUTOSET subsystem commands control the function of automatic waveform setting. The oscilloscope will automatically adjust the vertical position, the horizontal time base and the trigger mode according to the input signal to make the waveform display to the best state.

• ASET



 AUTOSET
 AUTO\_SETUP | ASET

 DESCRIPTION
 The AUTO\_SETUP command attempts to identify the waveform type and automatically adjusts controls to produce a usable display of the input signal.

 COMMAND SYNTAX
 AUTO\_SETUP

 EXAMPLE
 The following command instructs the oscilloscope to perform an auto-setup. Command message: ASET



# **CHANNEL** Commands

The CHANNEL subsystem commands control the analog channels. Channels are independently programmable for offset, probe, coupling, bandwidth limit, inversion, and more functions. The channel index (1, 2, 3, or 4) specified in the command selects the analog channel that is affected by the command.

- ATTN
- BWL
- CPL
- OFST
- SKEW
- TRA
- UNIT
- VDIV
- INVS



#### CHANNEL

# ATTENUATION | ATTN Command/Query

DESCRIPTION The ATTENUATION command specifies the probe attenuation factor for the selected channel. The probe attenuation factor may be 0.1 to 10000. This command does not change the actual input sensitivity of the oscilloscope. It changes the reference constants for scaling the display factors, for making automatic measurements, and for setting trigger levels. The ATTENUATION? query returns the current probe attenuation factor for the selected channel. COMMAND SYNTAX <channel>:ATTENUATION <attenuation> <channel>:={C1,C2,C3,C4} <attenuation>:={0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,10 00,2000,5000,10000} QUERY SYNTAX <channel>:ATTENUATION? **RESPONSE FORMAT** <channel>:ATTENUATION <attenuation> EXAMPLE The following command sets the attenuation factor of Channel 1 to 100:1. To ensure the data matches the true signal voltage values, the physical probe attenuation must match the scope attenuation values for that input channel. Command message: C1:ATTN 100 **RELATED COMMANDS** VDIV OFST



| CHANNEL         | BANDWIDTH_LIMIT   BWL<br>Command/Query                                                                                                                                                                                                                                                                                                                   |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | BANDWIDTH_LIMIT enables or disables the bandwidth-<br>limiting low-pass filter. If the bandwidth filters are on, it will<br>limit the bandwidth to reduce display noise. When you turn<br>Bandwidth Limit ON, the Bandwidth Limit value is set to 20<br>MHz. It also filters the signal to reduce noise and other<br>unwanted high frequency components. |
|                 | The BANDWIDTH_LIMIT? query returns whether the bandwidth filters are on.                                                                                                                                                                                                                                                                                 |
| COMMAND SYNTAX  | BANDWIDTH_LIMIT<br><channel>,<mode>[,<channel>,<mode>[,<channel>,<mod<br>e&gt;[, <channel>,<mode>]]]</mode></channel></mod<br></channel></mode></channel></mode></channel>                                                                                                                                                                               |
|                 | <channel>:={C1,C2,C3,C4}<br/><mode>:={ON,OFF}</mode></channel>                                                                                                                                                                                                                                                                                           |
| QUERY SYNTAX    | BANDWIDTH_LIMIT?                                                                                                                                                                                                                                                                                                                                         |
| RESPONSE FORMAT | BANDWIDTH_LIMIT<br><channel>,<mode>[,<channel>,<mode>[,<channel>,<mod<br>e&gt;[,<channel>,<mode>]]]</mode></channel></mod<br></channel></mode></channel></mode></channel>                                                                                                                                                                                |
| EXAMPLE         | <ul> <li>The following command turns on the bandwidth filter for all channels.</li> <li>Command message:</li> <li>BWL C1, ON, C2, ON, C3, ON, C4, ON</li> </ul>                                                                                                                                                                                          |
|                 | <ul> <li>The following command turns the bandwidth filter on for<br/>Channel 1 only.</li> <li>Command message:</li> <li>BWL C1,ON</li> </ul>                                                                                                                                                                                                             |



| CHANNEL         | COUPLING   CPL<br>Command/Query                                                                                                                                                                                                         |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The COUPLING command selects the coupling mode of the specified input channel.                                                                                                                                                          |
|                 | The COUPLING? query returns the coupling mode of the specified channel.                                                                                                                                                                 |
| COMMAND SYNTAX  | <channel>:COUPLING <coupling></coupling></channel>                                                                                                                                                                                      |
|                 | <channel>:={C1,C2,C3,C4}<br/><coupling>:={A1M,A50,D1M,D50,GND}<br/>•A — alternating current.<br/>•D — direct current.<br/>•1M — 1MΩ input impedance.<br/>•50 — 50Ω input impedance.<br/>•50 — 50Ω input impedance.</coupling></channel> |
| QUERY SYNTAX    | <channel>:COUPLING?</channel>                                                                                                                                                                                                           |
| RESPONSE FORMAT | <channel>:COUPLING <coupling></coupling></channel>                                                                                                                                                                                      |
| EXAMPLE         | The following command sets the coupling of Channel 2 to 50 $\Omega$ , DC.<br>Command message:<br><i>C2:CPL D50</i>                                                                                                                      |



| CHANNEL         | OFFSET   OFST<br>Command/Query                                                                                                                                                                                                                                                                        |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The OFFSET command allows adjustment of the vertical offset of the specified input channel. The maximum ranges depend on the fixed sensitivity setting.                                                                                                                                               |
|                 | The OFFSET? query returns the offset value of the specified channel.                                                                                                                                                                                                                                  |
| COMMAND SYNTAX  | <channel>:OFFSET <offset></offset></channel>                                                                                                                                                                                                                                                          |
|                 | <channel>:={C1,C2,C3,C4}<br/><offset>:= vertical offset value with unit, see the data<br/>sheet for details.</offset></channel>                                                                                                                                                                       |
|                 | <ul> <li>Note:</li> <li>If there is no unit (V/mV/uV) added, it defaults to volts (V).</li> <li>If you set the offset to a value outside of the legal range, the offset value is automatically set to the nearest legal value. Legal values are affected by the probe attenuation setting.</li> </ul> |
| QUERY SYNTAX    | <channel>:OFFSET?</channel>                                                                                                                                                                                                                                                                           |
| RESPONSE FORMAT | <channel>:OFFSET <offset><br/><offset>:= Numerical value in E-notation with SI unit.</offset></offset></channel>                                                                                                                                                                                      |
| EXAMPLE         | <ul> <li>The following command sets the offset of Channel 2 to -3</li> <li>V.</li> <li>Command message:</li> <li>C2:OFST -3V</li> </ul>                                                                                                                                                               |
|                 |                                                                                                                                                                                                                                                                                                       |

44

•The following command sets the offset of Channel 1 to - 50 mV.



# Command message:

C1:OFST -50mV

**RELATED COMMANDS** 

VDIV ATTN



CHANNEL

### SKEW Command/Query

 DESCRIPTION
 The SKEW command sets the channel-to-channel skew

 factor for the specified channel. Each analog channel can
 be adjusted + or -100 ns for a total of 200 ns difference

 between channels. You can use the oscilloscope's skew
 control to remove cable-delay errors between channels.

The SKEW? query returns the skew value of the specified trace.

**COMMAND SYNTAX** 

<trace>:SKEW <skew>

<trace>:={C1,C2,C3,C4} <skew>:= -100 ns to +100 ns.

QUERY SYNTAX

<trace>:SKEW?

**RESPONSE FORMAT** 

<trace>:SKEW <skew>

| Model        | Format of <skew></skew>            |
|--------------|------------------------------------|
| SDS1000X-E / | Numerical value in E-notation with |
| SDS2000X-E/  | SI unit, such as 9.99E-08S.        |
| SDS1000X-U   |                                    |
| others       | Numerical value with measurement   |
|              |                                    |
|              | 0.00HS.                            |

EXAMPLE

The following command sets skew value of Channel 1 to 3ns. Command message: *C1:SKEW 3NS* 



WWW.SIGLENT.COM

| CHANNEL         | TRACE   TRA<br>Command/Query                                                      |
|-----------------|-----------------------------------------------------------------------------------|
| DESCRIPTION     | The TRACE command turns the display of the specified channel on or off.           |
|                 | The TRACE? query returns the current display setting for the specified channel.   |
| COMMAND SYNTAX  | <trace>:TRACE <mode></mode></trace>                                               |
|                 | <trace>:={C1,C2,C3,C4}<br/><mode>:={ON,OFF}</mode></trace>                        |
| QUERY SYNTAX    | <trace>:TRACE?</trace>                                                            |
| RESPONSE FORMAT | <trace>:TRACE <mode></mode></trace>                                               |
| EXAMPLE         | The following command displays Channel 1.<br>Command message:<br><i>C1:TRA_ON</i> |



| CHANNEL         | UNIT<br>Command /Query                                                                                                                                                  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The UNIT command sets the unit of the specified trace.<br>Measurement results, channel sensitivity, and trigger level<br>will reflect the measurement units you select. |
|                 | The UNIT? query returns the unit of the specified trace.                                                                                                                |
| COMMAND SYNTAX  | <channel>:UNIT <type></type></channel>                                                                                                                                  |
|                 | <channel>:={C1,C2,C3,C4}<br/><type>:={V,A}</type></channel>                                                                                                             |
| QUERY SYNTAX    | <channel>:UNIT?</channel>                                                                                                                                               |
| RESPONSE FORMAT | <channel>:UNIT <type></type></channel>                                                                                                                                  |
| EXAMPLE         | The following command sets the unit of Channel 1 to V.<br>Command message:<br><i>C1:UNIT V</i>                                                                          |



| CHANNEL          | VOLT_DIV   VDIV<br>Command /Query                                                                                         |
|------------------|---------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The VOLT_DIV command sets the vertical sensitivity in Volts/div.                                                          |
|                  | If the probe attenuation is changed, the scale value is multiplied by the probe's attenuation factor.                     |
|                  | The VOLT_DIV? query returns the vertical sensitivity of the specified channel.                                            |
| COMMAND SYNTAX   | <channel>:VOLT_DIV <v_gain></v_gain></channel>                                                                            |
|                  | <channel>:={C1,C2,C3,C4}</channel>                                                                                        |
|                  | <v_gain>:= 500uV to 10V.</v_gain>                                                                                         |
|                  | Note:                                                                                                                     |
|                  | If there is no unit (V/mV/uV) added, it defaults to volts (V).                                                            |
| QUERY SYNTAX     | <channel>:VOLT_DIV?</channel>                                                                                             |
| RESPONSE FORMAT  | <channel>:VOLT_DIV <v_gain></v_gain></channel>                                                                            |
|                  | <v_gain>:= Numerical value in E-notation with SI unit.</v_gain>                                                           |
| EXAMPLE          | The following command sets the vertical sensitivity of Channel 1 to 50 mV/div.<br>Command message:<br><i>C1:VDIV 50mV</i> |
| RELATED COMMANDS | ATTN                                                                                                                      |



| CHANNEL         | INVERTSET   INVS<br>Command/Query                                                              |
|-----------------|------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The INVERTSET command mathematically inverts the specified traces or the math waveform.        |
|                 | The INVERTSET? query returns the current state of the channel inversion.                       |
| COMMAND SYNTAX  | <trace>:INVERTSET <state></state></trace>                                                      |
|                 | <trace>:={C1,C2,C3,C4,MATH}<br/><state>:= {ON,OFF}</state></trace>                             |
| QUERY SYNTAX    | <trace>:INVERTSET?</trace>                                                                     |
| RESPONSE FORMAT | <trace>:INVERTSET <state></state></trace>                                                      |
| EXAMPLE         | The following command inverts the trace of Channel 1.<br>Command message:<br><i>C1:INVS ON</i> |



# **CURSOR** Commands

The CURSOR subsystem commands set and query the settings of X-axis markers(X1 and X2 cursors) and the Y-axis markers (Y1 and Y2 cursors). You can set and query the marker mode and source, the position of X and Y cursors, and query delta X and delta Y cursor values.

- CRMS
- CRST
- CRTY
- CRVA?



| DESCRIPTION       The CURSOR_MEASURE command specifies the type of cursor or parameter measurement to be displayed         The CURSOR_MEASURE? query returns which cursors or parameter measurements are currently displayed.         COMMAND SYNTAX       CURSOR_MEASURE <mode>         Format 1:       <mode>:={OFF,ON}         •OFF - manual mode.       •ON - track mode.         •ON - track mode.       •OFF - close the cursors.         •MANUAL, TRACK)       •OFF - close the cursors.         •MANUAL - manual mode.       •TRACK - track mode.         TRACK - track mode.       TRACK - track mode.         QUERY SYNTAX       CURSOR_MEASURE?         RESPONSE FORMAT       CURSOR_MEASURE?         EXAMPLE       •The following command sets cursor function off on SDS1000X-E.         Command message:       <i>CRMS OFF</i></mode></mode>      | CURSOR          | CURSOR_MEASURE   CRMS<br>Command/Query                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|
| The CURSOR_MEASURE? query returns which cursors or parameter measurements are currently displayed.         COMMAND SYNTAX       CURSOR_MEASURE <mode>         Format 1:       <mode>:={OFF,ON}         •OFF — manual mode.       •ON = track mode.         •ON = track mode.       •ON = track mode.         •OFF — close the cursors.       •MANUAL_TRACK}         •OFF = close the cursors.       •MANUAL = manual mode.         •The table on next page shows the available command format in each oscilloscope series.       Mote:         QUERY SYNTAX       CURSOR_MEASURE?         RESPONSE FORMAT       CURSOR_MEASURE <mode>         EXAMPLE       •The following command sets cursor function off on SDS1000X-E. Command message:         <i>CURSO CIFF</i>       •The following command sets cursor function off on SDS1000X-E.</mode></mode></mode> | DESCRIPTION     | The CURSOR_MEASURE command specifies the type of cursor or parameter measurement to be displayed                |
| COMMAND SYNTAXCURSOR_MEASURE <mode>Format 1:<br/><mode>:={OFF,ON}<br/>•OFF - manual mode.<br/>•ON - track mode.<br>•ON - track mode.Format 2:<br/><mode>:={OFF,MANUAL,TRACK}<br/>•OFF - close the cursors.<br/>•MANUAL - manual mode.<br/>•TRACK - track mode.Note:<br/>The table on next page shows the available command<br/>format in each oscilloscope series.QUERY SYNTAXCURSOR_MEASURE?RESPONSE FORMATCURSOR_MEASURE <mode>EXAMPLE<br/>CURSOR_MEASURE•The following command sets cursor function off on<br/>SDS1000X-E.<br/>Command message:<br/><i>CRMS OFF</i></mode></mode></br></mode></mode>                                                                                                                                                                                                                                                         |                 | The CURSOR_MEASURE? query returns which cursors or parameter measurements are currently displayed.              |
| Format 1: <mode>:={OFF,ON}         •OFF - manual mode.       •OF - manual mode.         •ON - track mode.       •ON - track mode.         *ON - track mode.       Format 2:         <mode>:={OFF,MANUAL,TRACK}         •OFF - close the cursors.         •MANUAL - manual mode.         •TRACK - track mode.         •TRACK - track mode.         OUERY SYNTAX       CURSOR_MEASURE?         RESPONSE FORMAT       CURSOR_MEASURE <mode>         EXAMPLE       •The following command sets cursor function off on SDS1000X-E.         Command message:       <i>CRMS OFF</i></mode></mode></mode>                                                                                                                                                                                                                                                               | COMMAND SYNTAX  | CURSOR_MEASURE <mode></mode>                                                                                    |
| <pre><mode>:={OFF,JN}<br/>•OFF - manual mode.<br/>•ON - track mode.<br/>•ON - track mode.<br/>Format 2:<br/><mode>:={OFF,MANUAL,TRACK}<br/>•OFF - close the cursors.<br/>•MANUAL - manual mode.<br/>•TRACK - track mode.<br/>•TRACK - track mode.<br/>•TRACK - track mode.</mode></mode></pre><br>OUERY SYNTAX CURSOR_MEASURE?<br>RESPONSE FORMAT CURSOR_MEASURE <mode><br/>EXAMPLE •The following command sets cursor function off on<br/>SDS1000X-E.<br/>Command message:<br/>CRMS OFF</mode>                                                                                                                                                                                                                                                                                                                                                                 |                 | Format 1:                                                                                                       |
| •OFF - manual mode.         •ON - track mode.         •ON - track mode.         •ON - track mode.         Format 2: <mode>:={OFF,MANUAL,TRACK}         •OFF - close the cursors.         •OFF - close the cursors.         •MANUAL - manual mode.         •TRACK - track mode.         •TRACK - track mode.         •TRACK - track mode.         •The table on next page shows the available command format in each oscilloscope series.         QUERY SYNTAX       CURSOR_MEASURE?         RESPONSE FORMAT       CURSOR_MEASURE <mode>         EXAMPLE       •The following command sets cursor function off on SDS1000X-E.         Command message:       CRMS OFF</mode></mode>                                                                                                                                                                              |                 | <mode>:={OFF,ON}</mode>                                                                                         |
| -ON = track mode.         Format 2: <mode>:={OFF,MANUAL,TRACK}         •OFF - close the cursors.         •MANUAL - manual mode.         •TRACK - track mode.         Note:         The table on next page shows the available command format in each oscilloscope series.         QUERY SYNTAX         CURSOR_MEASURE?         RESPONSE FORMAT         CURSOR_MEASURE <mode>         •The following command sets cursor function off on SDS1000X-E.         Command message:         <i>CRMS OFF</i></mode></mode>                                                                                                                                                                                                                                                                                                                                              |                 | •OFF - Manual mode.                                                                                             |
| Format 2: <mode>:={OFF,MANUAL,TRACK}         •OFF - close the cursors.         •MANUAL - manual mode.         •TRACK - track mode.         •The table on next page shows the available command format in each oscilloscope series.         QUERY SYNTAX       CURSOR_MEASURE?         RESPONSE FORMAT       CURSOR_MEASURE <mode>         EXAMPLE       •The following command sets cursor function off on SDS1000X-E.         Command message:       <i>ORMS OFF</i></mode></mode>                                                                                                                                                                  |                 |                                                                                                                 |
| <ul> <li><mode>:={OFF,MANUAL,TRACK}</mode></li> <li>•OFF - close the cursors.</li> <li>•MANUAL - manual mode.</li> <li>•TRACK - track mode.</li> <li>•TRACK - track mode.</li> <li>•TRACK - track mode.</li> <li>QUERY SYNTAX</li> <li>CURSOR_MEASURE?</li> <li>RESPONSE FORMAT</li> <li>CURSOR_MEASURE <mode></mode></li> <li>EXAMPLE</li> <li>•The following command sets cursor function off on SDS1000X-E.<br/>Command message:<br/>CRMS OFF</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Format 2:                                                                                                       |
| <ul> <li>•OFF – close the cursors.</li> <li>•MANUAL – manual mode.</li> <li>•TRACK – track mode.</li> <li>•TRACK – track mode.</li> <li>Note:<br/>The table on next page shows the available command format in each oscilloscope series.</li> <li>QUERY SYNTAX</li> <li>CURSOR_MEASURE?</li> <li>RESPONSE FORMAT</li> <li>CURSOR_MEASURE <mode></mode></li> <li>EXAMPLE</li> <li>•The following command sets cursor function off on SDS1000X-E.<br/>Command message:<br/>CRMS OFF</li> </ul>                                                                                                                                                                                                                                                                                                                                                                    |                 | <mode>:={OFF,MANUAL,TRACK}</mode>                                                                               |
| <ul> <li>MANUAL – manual mode.</li> <li>TRACK – track mode.</li> <li>Note:<br/>The table on next page shows the available command format in each oscilloscope series.</li> <li>QUERY SYNTAX</li> <li>CURSOR_MEASURE?</li> <li>RESPONSE FORMAT</li> <li>CURSOR_MEASURE <mode></mode></li> <li>EXAMPLE</li> <li>The following command sets cursor function off on SDS1000X-E.<br/>Command message:<br/>CRMS OFF</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | •OFF — close the cursors.                                                                                       |
| <ul> <li>TRACK – track mode.</li> <li>Note:<br/>The table on next page shows the available command format in each oscilloscope series.</li> <li>QUERY SYNTAX</li> <li>CURSOR_MEASURE?</li> <li>RESPONSE FORMAT</li> <li>CURSOR_MEASURE <mode></mode></li> <li>EXAMPLE</li> <li>The following command sets cursor function off on SDS1000X-E.<br/>Command message:<br/>CRMS OFF</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | ■MANUAL — manual mode.                                                                                          |
| Note:<br>The table on next page shows the available command<br>format in each oscilloscope series.QUERY SYNTAXCURSOR_MEASURE?RESPONSE FORMATCURSOR_MEASURE <mode>EXAMPLE•The following command sets cursor function off on<br/>SDS1000X-E.<br/>Command message:<br/>CRMS OFF</mode>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | ■TRACK — track mode.                                                                                            |
| The table on next page shows the available command format in each oscilloscope series.         QUERY SYNTAX       CURSOR_MEASURE?         RESPONSE FORMAT       CURSOR_MEASURE <mode>         EXAMPLE       •The following command sets cursor function off on SDS1000X-E.         Command message:       CRMS OFF</mode>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | Note:                                                                                                           |
| GUERY SYNTAX       CURSOR_MEASURE?         RESPONSE FORMAT       CURSOR_MEASURE <mode>         EXAMPLE       •The following command sets cursor function off on SDS1000X-E.<br/>Command message:         CRMS OFF</mode>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | The table on next page shows the available command                                                              |
| QUERY SYNTAX       CURSOR_MEASURE?         RESPONSE FORMAT       CURSOR_MEASURE <mode>         EXAMPLE       •The following command sets cursor function off on SDS1000X-E.<br/>Command message:         CURSOR_MEASURE       COMMANDE</mode>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | format in each oscilloscope series.                                                                             |
| RESPONSE FORMAT       CURSOR_MEASURE <mode>         EXAMPLE       •The following command sets cursor function off on SDS1000X-E.         Command message:       CRMS OFF</mode>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QUERY SYNTAX    | CURSOR_MEASURE?                                                                                                 |
| •The following command sets cursor function off on<br>SDS1000X-E.<br>Command message:<br>CRMS OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RESPONSE FORMAT | CURSOR_MEASURE <mode></mode>                                                                                    |
| CRMS OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EXAMPLE         | <ul> <li>The following command sets cursor function off on<br/>SDS1000X-E.</li> <li>Command message:</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | CRMS OFF                                                                                                        |

•The following command sets cursor mode to track mode



on SDS1000X. Command message: *CRMS ON* 

**RELATED COMMANDS** 

CRVA? CRST

# Format in Each Oscilloscope Series

| Model                      | Command Format |
|----------------------------|----------------|
| SDS1000CFL                 | Format 1       |
| SDS1000A                   | Format 1       |
| SDS1000CML+/CNL+/DL+/E+/F+ | Format 1       |
| SDS2000X                   | Format 1       |
| SDS1000X                   | Format 1       |
| SDS1000X-E                 | Format 2       |
| SDS2000X-E                 | Format 2       |
| SDS1000X-U                 | Format 2       |



#### CURSOR

# CURSOR\_SET | CRST Command/Query

| DESCRIPTION    | The CURSOR_SET command allows the user to position<br>any one of the four independent cursors at a given screen<br>location. The positions of the cursors can be modified or<br>queried even if the required cursor is not currently<br>displayed on the screen. When setting a cursor position, a<br>trace must be specified, relative to which the cursor will be<br>positioned.                            |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | The CURSOR_SET? query returns the current position of the cursor(s). The values returned depend on the grid type selected.                                                                                                                                                                                                                                                                                    |
| COMMAND SYNTAX | <trace>:CURSOR_SET<br/><cursor>,<position>[,<cursor>,<position>[,<cursor>,<positi<br>on&gt;[,<cursor>,<position>]]]</position></cursor></positi<br></cursor></position></cursor></position></cursor></trace>                                                                                                                                                                                                  |
|                | <trace>:={C1,C2,C3,C4}<br/><cursor>:={VREF,VDIF,TREF,TDIF,HRDF,HDIF}<br/>•VREF — The voltage-value of Y1 (curA) under manual<br/>mode.<br/>•VDIF — The voltage-value of Y2 (curB) under manual<br/>mode.<br/>•TREF — The time value of X1 (curA) under manual<br/>mode.<br/>•TDIF — The time value of X2 (curB) under manual mode.<br/>•HREF — The time value of X1 (curA) under track mode.</cursor></trace> |
|                | <pre><position>:= -(grid/2)*DIV to (grid/2)*DIV when <cursor>= {TREF,TDIF, HRDF, HDIF} (horizontal) grid: The grid numbers in horizontal direction. <position>:= -4*DIV to 4*DIV when <cursor>= {VREF,VDIF} (vertical)</cursor></position></cursor></position></pre>                                                                                                                                          |

54



|                 | <ul> <li>Note:</li> <li>The horizontal position range is related to the size of screen.</li> <li>You need to add the unit to the position value.</li> </ul>                                                                                |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QUERY SYNTAX    | <trace>:CURSOR_SET?<br/><cursor>[,<cursor>[,<cursor>]]]</cursor></cursor></cursor></trace>                                                                                                                                                 |
|                 | <cursor>:={VREF,VDIF,TREF,TDIF,HREF,HDIF}</cursor>                                                                                                                                                                                         |
| RESPONSE FORMAT | <trace>:CURSOR_SET<br/><cursor>,<position>[,<cursor>,<position>[,<cursor>,<position>]]]</position></cursor></position></cursor></position></cursor></trace>                                                                                |
| EXAMPLE         | •When the current time base is 1 us, vdiv is 500 mV, the cursor mode is manual, the following command sets the X1 positions to -3 DIV, Y2 position to -1 DIV, using Channel 1 as a reference.<br>Command message:                          |
|                 |                                                                                                                                                                                                                                            |
|                 | •When the current time base is 1 us, the cursor mode is<br>track, the following command sets the X1 positions to -1<br>DIV, X2 position to 2 DIV, using Channel 1 as a reference.<br>Command message:<br><i>C1:CRST HREF,-1us,HDIF,2us</i> |

CRVA?



| CURSOR           | CURSOR_TYPE   CRTY<br>Command/Query                                                                  |
|------------------|------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The CURSOR_TYPE command specifies the type of cursor to be displayed when the cursor mode is manual. |
|                  | The CURSOR_TYPE query returns the current type of cursor.                                            |
| COMMAND SYNTAX   | CURSOR_TYPE <type></type>                                                                            |
|                  | <mode>:={X,Y,X-Y}</mode>                                                                             |
| QUERY SYNTAX     | CURSOR_TYPE?                                                                                         |
| RESPONSE FORMAT  | CURSOR_TYPE <type></type>                                                                            |
| EXAMPLE          | The following command sets cursor type to Y.<br>Command message:<br><i>CRTY Y</i>                    |
| RELATED COMMANDS | CRMS                                                                                                 |



| CURSOR          | CURSOR_VALUE?   CRVA?<br>Query                                                                                                                                                                                                                                        |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The CURSOR_VALUE? query returns the values measured by the specified cursors for a given trace.                                                                                                                                                                       |
| QUERY SYNTAX    | <trace>:CURSOR_VALUE? <mode></mode></trace>                                                                                                                                                                                                                           |
|                 | <trace>:= {C1,C2,C3,C4}</trace>                                                                                                                                                                                                                                       |
|                 | <mode>:= {HREL,VREL}<br/>•HREL — return the delta time value, reciprocal of delta<br/>time value, X1 (curA) time value and X2 (curB) time value.<br/>•VREL — return the delta volt value, Y1 (curA) volt value<br/>and Y2 (curB) volt value under manual mode.</mode> |
|                 | Note:                                                                                                                                                                                                                                                                 |
|                 | For non-SPO models, VREL is the delta volt value under manual mode. See models on page 15.                                                                                                                                                                            |
| RESPONSE FORMAT | <trace>:CURSOR_VALUE<br/>HREL,<delta>,&lt;1/delta&gt;,<value1>,<value2></value2></value1></delta></trace>                                                                                                                                                             |
|                 | <trace>:CURSOR_VALUE</trace>                                                                                                                                                                                                                                          |
|                 | VREL, <delta>,<value1>,<value2></value2></value1></delta>                                                                                                                                                                                                             |
| EXAMPLE         | When the cursor mode is manual, and the cursor type is Y, the following query returns the vertical value on channel 1.                                                                                                                                                |





Query message:

C1:CRVA? VREL

Response message:

C1:CRVA VREL,-5.00E+00V,2.50E+00V,-2.50E+00V

**RELATED COMMANDS** 

CRMS



# **DECODE** Commands

The DECODE subsystem commands control the serial protocols and parameters for each serial bus decode. They control the serial decode bus viewing, and other options.

- DCST
- DCPA
- B<n>:DCIC
- B<n>:DCSP
- B<n>:DCUT
- B<n>:DCCN
- B<n>:DCLN

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |

# Availability of Decode Commands in Each Oscilloscope Series



| DECODE          | DCST<br>Command/Query                                                         |
|-----------------|-------------------------------------------------------------------------------|
| DESCRIPTION     | The DCST command is used to set the state of decode.                          |
|                 | The DCST? query returns the state of decode.                                  |
| COMMAND SYNTAX  | DCST <state></state>                                                          |
|                 | <state>:={OFF,ON}</state>                                                     |
| QUERY SYNTAX    | DCST?                                                                         |
| RESPONSE FORMAT | DCST <state></state>                                                          |
| EXAMPLE         | The following command sets Decode function on.<br>Command message:<br>DCST ON |



### DCPA Command

#### DESCRIPTION

COMMAND SYNTAX

The DCPA command is used to set the common parameters of serial decode bus.

DCPA <param>,<value>[,<param>,<value>[,..]]

| <param/> | <value></value>     |
|----------|---------------------|
| BUS      | {B1,B2}             |
| LIST     | {OFF,D1,D2}         |
| FOMT     | {BIN,DEC,HEX}       |
| LINK     | {TR_TO_DC,DC_TO_TR} |
| LSSC     | 1 to lines of list  |
| LSNM     | 1 to 7              |

■BUS— Decode bus, set B1 as BUS1 and B2 as BUS2.

LIST— Decode list, set OFF to turn off the list, set D1 to select the list of bus1 and set D2 to select the list of bus2.
FOMT— Format of the decode data.

•LINK— Copy setting, set TR\_TO\_DC to copy from trigger, and set DC\_TO\_TR to copy to trigger.

LSSC—List scroll.

LSNM— List lines.

•The following command sets the current decode bus to bus1 separately.

Command message:

DCPA BUS,B1

•The following command sets the current decode bus to bus2, set format of bus2 data to hex, select the list of bus2 and set the list lines to 5. Command message:

DCPA BUS, B2, LIST, D2, FOMT, HEX, LSNM, 5



WWW.SIGLENT.COM

EXAMPLE

### B<n>:DCIC Command

## DESCRIPTION

COMMAND SYNTAX

The B<n>:DCIC command is used to set the parameters of IIC decode bus.

B<n>:DCIC <param>,<value>[,<param>,<value>[,..]]

<n>:={1,2}

| <param/> | <value></value>                     |
|----------|-------------------------------------|
| DIS      | {OFF,ON}                            |
| SCL      | {C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D |
|          | 7,D8,D9,D10,D11,D12,D13,D14,D15}    |
| SCLT     | value with unit                     |
| SDA      | {C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D |
|          | 7,D8,D9,D10,D11,D12,D13,D14,D15}    |
| SDAT     | value with unit                     |
| RW       | {OFF,ON}                            |

•DIS— Display the current bus.

•SCL—Set the SCL source for the IIC bus.

•SCLT— Set the threshold of the SCL.

•SDA— Set the SDA source for the IIC bus.

•SDAT— Set the threshold of the SDA.

•RW— Set whether the read/write bit is included in the address. Set on to include and set off to not include.

#### Note:

•You need add the volt unit (V) to the value. If there is no unit added, it defaults to be V.

•Only international unit (V) is supported at present.

•The range of value is related to the vertical scale of the source.

EXAMPLE

•The following command sets the threshold of SCL source



WWW.SIGLENT.COM

for IIC bus2 to 200mv separately. Command message: *B2:DCIC SCLT,0.2V* 

•The following command sets IIC bus1 to display, sets the SCL source to D0, sets the SDA source to D1, and includes the R/W bit in the address.

Command message: B1:DCIC DIS,ON,SCL,D0,SDA,D1,RW,ON



B<n>:DCSP Command

## DESCRIPTION

COMMAND SYNTAX

The B<n>:DCSP command is used to set the parameters of SPI decode bus.

B<n>:DCSP <param>,<value>[,<param>,<value>[,..]]

<n>:={1,2}

| <param/> | <value></value>                       |
|----------|---------------------------------------|
| DIS      | {OFF,ON}                              |
| CLK      | {C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7, |
|          | D8,D9,D10,D11,D12,D13,D14,D15}        |
| CLKT     | value with unit                       |
| EDGE     | {RISING,FALLING}                      |
| MISO     | {C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7, |
|          | D8,D9,D10,D11,D12,D13,D14,D15}        |
| MISOT    | value with unit                       |
| MOSI     | {C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7, |
|          | D8,D9,D10,D11,D12,D13,D14,D15}        |
| MOSIT    | value with unit                       |
| CSTP     | {CS,NCS,TIMEOUT}                      |
| CS       | {C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7, |
|          | D8,D9,D10,D11,D12,D13,D14,D15}        |
| CST      | value with unit                       |
| NCS      | {C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7, |
|          | D8,D9,D10,D11,D12,D13,D14,D15}        |
| NCST     | value with unit                       |
| TIM      | value with unit                       |
| BIT      | {MSB,LSB}                             |
| DLEN     | 4 to 32                               |

•DIS— Display the current bus.

•CLK— Set the CLK source for the SPI bus.

•CLK— Set the threshold of the CLK.



- •EDGE— Set the edge of the clock that data latched on.
- •MISO— Set the MISO source for the SPI bus.
- •MISOT— Set the threshold of the MISO.
- MOSI— Sets the MISO source for the SPI bus.
- MOSIT— Set the threshold of the MISO.
- CSTP— Set the chip selection type for the SPI bus.
- •CS— Set the CS source for the SPI bus.
- CST— Set the threshold of the CS.
- ■NCS—Set the ~CS source for the SPI bus.
- •NCST— Set the threshold of the ~CS.
- •TIM— Set the timeout value when the CS type is CLK Timeout.
- •BIT— Set the bit order for the SPI bus.
- DLEN— Set the data length for the SPI bus.

#### Note:

•You need add the volt unit (V) or time unit (S) to the value. If there is no unit added, it defaults to be V or S.

•Only international unit (V/S) is supported at present.

•The range of threshold value is related to the vertical scale of the source.

 The following command sets the threshold of CLK source for SPI bus2 to 200mV separately.
 Command message:

B2:DCSP CLKT,0.2V

•The following command sets SPI bus1 to display, sets the CLK source to D0, sets the MOSI source to D1, sets the CS type to TIMEOUT and the timeout value to 2us, sets the bit order to MSB, and set the data length to 32. Command message:

B1:DCSP DIS,ON,CLK,D0,MOSI,D1,CSTP,TIMEOUT,TIM,2uS,BIT, MSB,DLEN,32



**EXAMPLE** 

### B<n>:DCUT Command

DESCRIPTION

COMMAND SYNTAX

The B<n>:DCUT command is used to set the parameters of UART decode bus.

B<n>:DCUT <param>,<value>[,<param>,<value>[,..]]

<n>:={1,2}

| <param/> | <value></value>                     |
|----------|-------------------------------------|
| DIS      | {OFF,ON}                            |
| RX       | {C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D |
|          | 7,D8,D9,D10,D11,D12,D13,D14,D15}    |
| RXT      | value with unit                     |
| ТХ       | {C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D |
|          | 7,D8,D9,D10,D11,D12,D13,D14,D15}    |
| ТХТ      | value with unit                     |
| BAUD     | value without unit, 300 to 50000000 |
| DLEN     | 5 to 8                              |
| PAR      | {NONE,EVEN,ODD}                     |
| STOP     | {1,1.5,2}                           |
| POL      | {LOW,HIGH}                          |
| BIT      | {MSB,LSB}                           |

•DIS— Display the current bus.

RX— Set the RX source for the UART bus.

•RXT— Set the threshold of the RX.

•TX— Set the TX source for the UART bus.

•TXT— Set the threshold of the TX.

•BAUD— Set the baud rate for the UART bus.

•DLEN— Set the data length for the UART bus.

PAR— Set the parity check for the UART bus.

•STOP— Set the length of stop bit for the UART bus.

•POL— Set the idle level for the UART bus.

•BIT— Sets the bit order for the UART bus.



**EXAMPLE** 

Note:

•You need add the volt unit (V) to the value. If there is no unit added, it defaults to be V.

•Only international unit (V) is supported at present.

•The range of value is related to the vertical scale of the source.

The following command sets the threshold of RX source for UART bus2 to 200mV separately.
Command message:
B2:DCUT RX,0.2V

•The following command sets UART bus1 to display, sets the RX source to D0, sets the baud rate to 9600 bit/s, sets the parity check to ODD, sets the stop bit length to 2, sets the idle level to HIGH and the bit order to MSB. Command message:

B1:DCUT DIS,ON,RX,D0,BAUD,9600,PAR,ODD,STOP,2POL,HIG H,BIT,MSB



B<n>:DCCN Command

#### DESCRIPTION

COMMAND SYNTAX

The B<n>:DCCN command is used to set the parameters of CAN decode bus.

B<n>:DCCN <param>,<value>[,<param>,<value>[..]]

<n>:={1,2}

| <param/> | <value></value>                        |
|----------|----------------------------------------|
| DIS      | {OFF,ON}                               |
| CANH     | {C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7,D |
|          | 8,D9,D10,D11,D12,D13,D14,D15}          |
| CANHT    | value with unit                        |
| CANL     | {C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7,D |
|          | 8,D9,D10,D11,D12,D13,D14,D15}          |
| CANLT    | value with unit                        |
| SRC      | {CAN_H,CAN_L,SUB_L}                    |
| BAUD     | 5000 to 1000000                        |

•DIS— Display the current bus.

•CANH— Set the CANH source for the CAN bus.

- •CANHT— Set the threshold of the CANH.
- •CANL— Set the CANL source for the CAN bus.
- •CANLT— Set the threshold of the CANL.

■SRC— Set the decode source for the CAN bus.

•BAUD— Set the baud rate for the CAN bus.

#### Note:

•You need add the volt unit (V) to the value. If there is no unit added, it defaults to be V.

•Only international unit (V) is supported at present.

•The range of value is related to the vertical scale of the source.



#### EXAMPLE

•The following command sets the threshold of CANH source for CAN bus2 to 200mV separately. Command message: B2:DCCN CANH,0.2V

•The following command sets CAN bus1 to display, sets the CANH source to D0, sets the decode source to CANH and the baud rate to 9600 bit/s.

Command message:

B1:DCCN DIS, ON, CANH, D0, SRC, CANH, BAUD, 9600



## B<n>:DCLN Command

## DESCRIPTION

COMMAND SYNTAX

The B<n>:DCLN command is used to set the parameters of LIN decode bus.

B<n>:DCLN <param>,<value>[,<param>,<value>[,..]]

<n>:={1,2}

| <param/> | <value></value>                       |
|----------|---------------------------------------|
| DIS      | {OFF,ON}                              |
| SRC      | {C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7, |
|          | D8,D9,D10,D11,D12,D13,D14,D15}        |
| SRCT     | value with unit                       |
| BAUD     | 300 to 2000                           |

•DIS— Display the current bus.

•SRC— Set the source for the LIN bus.

•SRCT— Set the threshold of the Source.

•BAUD— Set the baud rate for the LIN bus.

#### Note:

•You need add the volt unit (V) to the value. If there is no unit added, it defaults to be V.

•Only international unit (V) is supported at present.

•The range of value is related to the vertical scale of the source.

EXAMPLE

•The following command sets the threshold of source for LIN bus2 to 200mV separately.

Command message:

B2:DCLN SRCT,0.2V

•The following command sets LIN bus1 to display, sets the decode source to D0 and the baud rate to 9600 bit/s.



## Command message:

B1:DCCN DIS,ON,SRC,D0,BAUD,9600



# **DIGITAL Commands**

The DIGITAL subsystem commands control the viewing of digital channels. They also control threshold settings for groups of digital channels.

- DGCH
- DGST
- DGTH
- DI:SW
- TRA
- TSM
- CUS

#### Note:

These commands are only valid for models which have installed the MSO option.

### Availability of Digital Commands in Each Oscilloscope Series

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | yes    |
| SDS1000X                   | yes    |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | no     |


| DIGITAL         | DIGITAL_CHANNEL   DGCH<br>Command/Query                                                                  |
|-----------------|----------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The DIGITAL_CHANNEL command turns digital display<br>on or off for the specified channel.                |
|                 | The DIGITAL_CHANNEL? query returns the current digital display setting for the specified channel.        |
| COMMAND SYNTAX  | <digital>:DIGITAL_STATE <state></state></digital>                                                        |
|                 | <digital>:={D0,D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D<br/>12,D13,D14,D15}</digital>                        |
|                 | <state>:={OFF,ON}</state>                                                                                |
| QUERY SYNTAX    | <digital>:DIGITAL_STATE?</digital>                                                                       |
| RESPONSE FORMAT | <digital>:DIGITAL_STATE <state></state></digital>                                                        |
| EXAMPLE         | For SDS1000X+ series, the following command sets D8 display on.<br>Command message:<br><i>D8:DGCH_ON</i> |

| Model      | Valid? |
|------------|--------|
| SDS2000X   | yes    |
| SDS1000X   | yes    |
| SDS1000X-E | no     |
| SDS2000X-E | no     |



| DIGITAL         | DIGITAL_STATE   DGST<br>Command/Query                                                                   |
|-----------------|---------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The DIGITAL_STATE command is used to set the state of digital.                                          |
|                 | The DIGITAL_STATE? query returns the state of digital.                                                  |
| COMMAND SYNTAX  | DIGITAL_STATE <state></state>                                                                           |
|                 | <state>:={OFF,ON}</state>                                                                               |
| QUERY SYNTAX    | DIGITAL_STATE?                                                                                          |
| RESPONSE FORMAT | DIGITAL_STATE <state></state>                                                                           |
| EXAMPLE         | For SDS1000X+ series, the following command sets<br>Digital function on.<br>Command message:<br>DGST_ON |

| Model      | Valid? |
|------------|--------|
| SDS2000X   | yes    |
| SDS1000X   | yes    |
| SDS1000X-E | no     |
| SDS2000X-E | no     |



DIGITAL

# DIGITAL\_THR | DGTH Command/Query

DESCRIPTION The DIGITAL\_THR command sets the threshold for the specified group of channels. The threshold is used for triggering purposes and for displaying the digital data as high (above the threshold) or low (below the threshold).

The DIGITAL\_THR? query returns the threshold value for the specified group of channels.

COMMAND SYNTAX <group>:DIGITAL\_THR <type>[,<level>]

<group>:={C1,C2} •C1 — D0-D7. •C2 — D8-D15. <type>:={TTL,CMOS,CMOS3.3,CMOS2.5,CUSTOM} <level>:= -5V to 5V when <type> is CUSTOM.

#### Note:

If there is no unit (V) added to <level>, it defaults to be V.
If you set the threshold to a value outside of the legal range, the threshold is automatically set to the nearest legal value.

QUERY SYNTAX

<group>:DIGITAL\_THR?

**RESPONSE FORMAT** 

Format 1: DIGITAL\_THR <type>

Format 2: DIGITAL\_THR <group>,<level>

| <type></type>            | Response Format |
|--------------------------|-----------------|
| TTL/CMOS/CMOS3.3/CMOS2.5 | Format 1        |
| CUSTOM                   | Format 2        |



### EXAMPLE

•For SDS1000X+ series, when the Digital function is on, the following command sets the threshold of D0-D7 to LVLCMOS3.3.

Command message:

C1:DGTH CMOS3.3

•For SDS1000X+ series, when the Digital function is on, the following command sets the threshold of D8-D15 to 3 V.

Command message: C2:DGTH CUSTOM,3V

Note:

| Model      | Valid? |
|------------|--------|
| SDS2000X   | yes    |
| SDS1000X   | yes    |
| SDS1000X-E | no     |
| SDS2000X-E | no     |



| DIGITAL         | DI:SWITCH   DI:SW<br>Command/Query                                                                                   |
|-----------------|----------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The SWITCH command is used to set the state of digital.                                                              |
|                 | The SWITCH? query returns the state of digital.                                                                      |
| COMMAND SYNTAX  | DI:SWITCH <state></state>                                                                                            |
|                 | <state>:={OFF,ON}</state>                                                                                            |
| QUERY SYNTAX    | DI:SWITCH?                                                                                                           |
| RESPONSE FORMAT | DI:SWITCH <state></state>                                                                                            |
| EXAMPLE         | For SDS1000X-E series, the following command sets<br>Digital function on.<br>Command message:<br><i>DI:SWITCH ON</i> |

| Model      | Valid? |
|------------|--------|
| SDS2000X   | no     |
| SDS1000X   | no     |
| SDS1000X-E | yes    |
| SDS2000X-E | yes    |



| DIGITAL         | TRACE   TRA<br>Command/Query                                                                                    |
|-----------------|-----------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRACE command turns digital display on or off for the specified channel.                                    |
|                 | The TRACE? query returns the current digital display setting for the specified channel.                         |
| COMMAND SYNTAX  | <digital>:TRACE <state></state></digital>                                                                       |
|                 | <digital>:={D0,D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D<br/>12,D13,D14,D15}<br/><state>:={OFF,ON}</state></digital> |
| QUERY SYNTAX    | <digital>:TRACE?</digital>                                                                                      |
| RESPONSE FORMAT | <digital>:TRACE <state></state></digital>                                                                       |
| EXAMPLE         | For SDS1000X-E series, the following command sets D8 display on.<br>Command message:<br><i>D8:TRACE_ON</i>      |

| Model      | Valid? |
|------------|--------|
| SDS2000X   | no     |
| SDS1000X   | no     |
| SDS1000X-E | yes    |
| SDS2000X-E | yes    |



| DIGITAL         | THRESHOLD_MODE   TSM<br>Command/Query                                                                                                                                                                                                             |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The THRESHOLD_MODE command sets the threshold<br>type for the specified group of channels. The threshold is<br>used for triggering purposes and for displaying the digital<br>data as high (above the threshold) or low (below the<br>threshold). |
|                 | The THRESHOLD_MODE? query returns the threshold type for the specified group of channels.                                                                                                                                                         |
| COMMAND SYNTAX  | <pre><group>:THRESHOLD_MODE <type></type></group></pre>                                                                                                                                                                                           |
|                 | <group>:={H8,L8}<br/>•H8 — D8-D15.<br/>•L8 — D0-D7.<br/><type>:={TTL,CMOS,LVCMOS33,LVCMOS25,CUSTOM}</type></group>                                                                                                                                |
| QUERY SYNTAX    | <pre><group>:THRESHOLD_MODE?</group></pre>                                                                                                                                                                                                        |
| RESPONSE FORMAT | <group>:THRESHOLD_MODE <type></type></group>                                                                                                                                                                                                      |
| EXAMPLE         | For SDS1000X-E series, when the Digital function is on, the following command sets the threshold of D0-D7 to LVLCMOS3.3.<br>Command message:<br><i>L8:TSM LVCMOS33</i>                                                                            |

| Model      | Valid? |
|------------|--------|
| SDS2000X   | no     |
| SDS1000X   | no     |
| SDS1000X-E | yes    |
| SDS2000X-E | yes    |



DIGITAL

CUSTOM | CUS Command/Query

DESCRIPTION The CUSTOM command sets the threshold value by customer for the specified group of channels. The threshold is used for triggering purposes and for displaying the digital data as high (above the threshold) or low (below the threshold).

The CUSTOM? query returns the threshold value set by customer for the specified group of channels.

COMMAND SYNTAX

<group>:CUSTOM <value>

<group>:={H8,L8} •H8 — D8-D15. •L8 — D0-D7.

<value>:= volt value with unit.

### Note:

•You need to add the volt unit (V/mV) to the value. If there is no unit added, it defaults to volts (V).

•The range of value varies from models. See the data sheet for details.

An out-of-range value will be adjusted to the closest legal value.

<group>:CUSTOM?

<group>:CUSTOM <value>

RESPONSE FORMAT

QUERY SYNTAX

EXAMPLE

For SDS1000X-E series, when the Digital function is on, the following command sets the threshold value of D8-D15 to 5 V.

Command message: L8:CUSTOM 5V

80



| Model      | Valid? |
|------------|--------|
| SDS2000X   | no     |
| SDS1000X   | no     |
| SDS1000X-E | yes    |
| SDS2000X-E | yes    |



# **DISPLAY Commands**

The DISPLAY subsystem is used to control how waveforms, and the graticules are displayed on the screen.

- DTJN
- GRDS
- INTS
- MENU
- PESU



| DISPLAY         | DOT_JOIN   DTJN<br>Command/Query                                                                                                                                                                                                        |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The DOT_JOIN command sets the interpolation lines between data points.                                                                                                                                                                  |
| COMMAND SYNTAX  | DOT_JOIN <state></state>                                                                                                                                                                                                                |
|                 | <state>:={ON,OFF}<br/>•ON — dots. This mode displays data more quickly than<br/>vector mode but does not draw lines between sample<br/>points.<br/>•OFF — vectors. This is the default mode and draws lines<br/>between points.</state> |
| QUERY SYNTAX    | DOT_JOIN?                                                                                                                                                                                                                               |
| RESPONSE FORMAT | DOT_JOIN <state></state>                                                                                                                                                                                                                |
| EXAMPLE         | The following command turns off the interpolation lines.<br>Command message:<br>DTJN ON                                                                                                                                                 |



| DISPLAY         | GRID_DISPLAY   GRDS<br>Command/Query                                                                 |
|-----------------|------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The GRID_DISPLAY command selects the type of the grid which is used to display.                      |
|                 | The GRID_DISPLAY? query returns the current type of grid.                                            |
| COMMAND SYNTAX  | GRID_DISPLAY <type></type>                                                                           |
|                 | < type >:={FULL,HALF,OFF}                                                                            |
| QUERY SYNTAX    | GRID_DISPLAY?                                                                                        |
| RESPONSE FORMAT | GRID_DISPLAY <type></type>                                                                           |
| EXAMPLE         | The following command changes the type of grid to full grid.<br>Command message:<br><i>GRDS FULL</i> |



| DISPLAY         | INTENSITY   INTS<br>Command/Query                                                                                                |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The INTENSITY command sets the intensity level of the grid or the trace.                                                         |
|                 | The INTENSITY? query returns the grid and trace intensity levels.                                                                |
| COMMAND SYNTAX  | INTENSITY GRID, <value>,TRACE,<value></value></value>                                                                            |
|                 | <value>:= 0 (or 30) to 100</value>                                                                                               |
|                 | Note:<br>You can also set the intensity level of the grid or trace<br>using a key-value pair alone, see the example for details. |
| QUERY SYNTAX    | INTENSITY?                                                                                                                       |
| RESPONSE FORMAT | INTENSITY TRACE, <value>,GRID,<value></value></value>                                                                            |
| EXAMPLE         | The following command changes the grid intensity level to 75%.<br>Command message:<br><i>INTS GRID,75</i>                        |



| DISPLAY         | MENU<br>Command/Query                                                                 |
|-----------------|---------------------------------------------------------------------------------------|
| DESCRIPTION     | The MENU command enables or disables to display the menu.                             |
|                 | The MENU? query returns whether the menu is displayed.                                |
| COMMAND SYNTAX  | MENU <state></state>                                                                  |
|                 | <state>:={ON,OFF}</state>                                                             |
| QUERY SYNTAX    | MENU?                                                                                 |
| RESPONSE FORMAT | MENU <state></state>                                                                  |
| EXAMPLE         | The following command enables the display of the menu.<br>Command message:<br>MENU ON |



#### DISPLAY

# PERSIST\_SETUP | PESU Command/Query

DESCRIPTION

The PERSIST\_SETUP command selects the persistence duration of the display, in seconds, in persistence mode.

The PERSIST\_SETUP? query returns the current status of the persistence.

#### COMMAND SYNTAX

PERSIST\_SETUP <time>

| Models      | <time>:=</time>          |
|-------------|--------------------------|
| SDS1000X-E/ | {OFF,INFINITE,1,5,10,30} |
| SDS2000X-E/ |                          |
| SDS1000X-U  |                          |
| Others      | {INFINITE,1,5,10,30}     |

#### Note:

•See models on page 15.

•See the command PERS in Obsolete Commands for Old Models to set persist off.

•Options of <time> vary from models. See the data sheet or the display menu of the oscilloscope for details.

QUERY SYNTAX

**RESPONSE FORMAT** 

EXAMPLE

The following command sets the variable persistence at 5 seconds.

Command message:

PERSIST\_SETUP?

PERSIST\_SETUP <time>

PESU 5



# **HISTORY Commands**

The HISTORY subsystem commands control the waveform recording function and the history waveform play function.

- FRAM
- FTIM?
- HSMD
- HSLST



| HISTORY         | FRAME_SET   FRAM<br>Command/Query                                                                                                                         |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The FRAME_SET command is used to set history current frame number.                                                                                        |
|                 | The FRAME_SET? query returns the current frame number.                                                                                                    |
| COMMAND SYNTAX  | FRAM <frame_num></frame_num>                                                                                                                              |
|                 | <frame_num>:= 0 to the max frame number.</frame_num>                                                                                                      |
|                 | Note:<br>You can send the query FRAM? to get the max frame<br>number when the history function is turned on for the first<br>time.                        |
| QUERY SYNTAX    | FRAM?                                                                                                                                                     |
| RESPONSE FORMAT | FRAM <frame_num></frame_num>                                                                                                                              |
|                 | <b>Note:</b><br>The query is only valid for SDS1000X-E series.                                                                                            |
| EXAMPLE         | When the history function is on, the following command<br>sets current frame number to 50. Then you can see the<br>response on the screen as shown below. |





Command message:

FRAM 50



| HISTORY         | FRAME_TIME?   FTIM?<br>Query                                                                                                                                                                                                  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The FRAME_TIME query returns the acquire timestamp of the current frame.                                                                                                                                                      |
| QUERY SYNTAX    | FTIM?                                                                                                                                                                                                                         |
| RESPONSE FORMAT | Format 1:<br>FTIM hour: minute: second. micro-second                                                                                                                                                                          |
|                 | Format 2:<br>\xFF\x0F\x03\x01&\xD5\x02\x00                                                                                                                                                                                    |
|                 | Note:<br>•Format 2 is binary data and has no key word.<br>•The table below shows the available response format in<br>each oscilloscope series.                                                                                |
| EXAMPLE         | For the SDS1000X-E series, when the history function is<br>on, the following query returns the acquire time of the<br>current frame.<br>Query message:<br><i>FTIM?</i><br>Response message:<br><i>FTIM 00: 05: 12. 650814</i> |

# Format in Each Oscilloscope Series

| Model                      | Response Format |
|----------------------------|-----------------|
| SDS1000CFL                 | Format 2        |
| SDS1000A                   | Format 2        |
| SDS1000CML+/CNL+/DL+/E+/F+ | Format 2        |
| SDS2000X                   | Format 2        |
| SDS1000X                   | Format 2        |
| SDS1000X-E/2000X-E/1000X-U | Format 1        |



| HISTORY         | HISTORY_MODE   HSMD<br>Command/Query                                                              |
|-----------------|---------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The HISTORY_MODE command is used to set the state of history mode.                                |
|                 | The HISTORY_MODE? query returns the current state of history mode.                                |
| COMMAND SYNTAX  | HSMD <state></state>                                                                              |
|                 | <state>:={ON,OFF}</state>                                                                         |
| QUERY SYNTAX    | HSMD?                                                                                             |
| RESPONSE FORMAT | HSMD <state></state>                                                                              |
| EXAMPLE         | The following command sets the state of history mode to ON.<br>Command message:<br><i>HSMD_ON</i> |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



| HISTORY          | HISTORY_LIST   HSLST<br>Command/Query                                                                                           |
|------------------|---------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The HISTORY_LIST command is used to set the state of history list.                                                              |
|                  | The HISTORY_LIST? query returns the current state of history list.                                                              |
| COMMAND SYNTAX   | HSLST <state></state>                                                                                                           |
|                  | <state>:={ON,OFF}</state>                                                                                                       |
|                  | Note:<br>This command can only be used when History function is<br>turned on.                                                   |
| QUERY SYNTAX     | HSLST?                                                                                                                          |
| RESPONSE FORMAT  | HSLST <state></state>                                                                                                           |
| EXAMPLE          | When History function is on, the following command sets the state of history list to ON.<br>Command message:<br><i>HSLST ON</i> |
| RELATED COMMANDS | HSMD                                                                                                                            |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL/CML /CNL/DL     | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS1000A                   | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |



| SDS1000X-E | yes |
|------------|-----|
| SDS2000X-E | yes |
| SDS1000X-U | yes |



# MATH Commands

The MATH subsystem controls the math functions in the oscilloscope. As selected by the DEF command, these math functions are available:

Operators: Add, Subtract, Multiply, Divide. Operators perform their function on two analog channel sources.

Transforms: DIFF, Integrate, FFT, SQRT.

- DEF
- INVS
- MTVD
- MTVP
- FFTC
- FFTF
- 1111
- FFTP
- FFTS
- FFTT?
- FFTU
- FFTW



MATH

# DEFINE | DEF Command/Query

# DESCRIPTION

The DEFINE command sets the desired waveform math operation.

The DEFINE? query returns the current operation for the selected function.

COMMAND SYNTAX DEFINE EQN,'<equation>'

#### Note:

<equation> is the mathematical expression, enclosed by single or double quotation marks.

| Function Equations                        |                |  |
|-------------------------------------------|----------------|--|
| <source1> + <source2></source2></source1> | Addition       |  |
| <source1> - <source2></source2></source1> | Subtraction    |  |
| <source1>*<source2></source2></source1>   | Multiplication |  |
| <source1>/<source2></source2></source1>   | Ratio          |  |
| FFT <source/>                             | FFT            |  |
| INTG <source/>                            | Integral       |  |
| DIFF <source/>                            | Differentiator |  |
| SQRT <source/>                            | Square Root    |  |

<source>:={C1,C2,C3,C4} <source1>:={C1,C2,C3,C4} <source2>:={C1,C2,C3,C4}

QUERY SYNTAX

DEFINE?

**RESPONSE FORMAT** DEFINE EQN,'<equation>'

EXAMPLE

•When the Math function is on, and both Channel 1 and Channel 2 are on, the following command sets the math operation to Multiplication, source1 to C1, source2 to C2.



Command message: DEFINE EQN, 'C1\*C2'

•When the Math function is on, and Channel 1 is on, the following command sets the math operation to Differentiator, source to C1.

Command message:

DEFINE EQN, 'DIFFC1'



| MATH            | INVERTSET   INVS<br>Command/Query                                                                                                                   |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The INVERTSET command inverts the math waveform.                                                                                                    |
|                 | The INVERTSET? query returns whether the math waveform is inverted or not.                                                                          |
|                 | Note:                                                                                                                                               |
|                 | This command is only valid in add, subtract, multiply and divide operation.                                                                         |
| COMMAND SYNTAX  | <trace>:INVERTSET <state></state></trace>                                                                                                           |
|                 | <trace>:={MATH}</trace>                                                                                                                             |
|                 | <state>:= {ON,OFF}</state>                                                                                                                          |
| QUERY SYNTAX    | <trace>:INVERTSET?</trace>                                                                                                                          |
| RESPONSE FORMAT | <trace>:INVERTSET <state></state></trace>                                                                                                           |
| EXAMPLE         | When the Math function is on, and the operation is Add, the following command inverts the math waveform.<br>Command message:<br><i>MATH:INVS ON</i> |



MATH

# MATH\_VERT\_DIV | MTVD Command/Query

 DESCRIPTION
 The MATH\_VERT\_DIV command sets the vertical scale of the selected math operation. This command is only valid in add, subtract, multiply and divide operation.

The MATH\_VERT\_DIV? query returns the current scale value for the selected operation.

#### COMMAND SYNTAX MATH\_VERT\_DIV <scale>

<scale>:={500uV,1mV,2mV,5mV,10mV,20mV, 50mV,100mV,200mV,500mV,1V,2V,5V,10V,20V,50V,100 V} (for add, subtract, multiply and divide)

#### Note:

Legal values for the scale depend on the selected operation. For details, please refer to the math menu of the oscilloscope as shown below.



QUERY SYNTAX

MATH\_VERT\_DIV?

**RESPONSE FORMAT** 

## MATH\_VERT\_DIV <scale>

| Model       | Format of | <scale></scale> |               |      |
|-------------|-----------|-----------------|---------------|------|
| SDS1000X-E/ | Numerical | value           | in E-notation | with |





| SDS2000X-E/ | SI unit, such as 5.00E-01V.           |
|-------------|---------------------------------------|
| SDS1000X-U  |                                       |
| Others      | Numerical value with measurement unit |
|             | and physical unit, such as 500mV.     |

EXAMPLE

When the Math function is on, and the operator is Add, the following command changes the vertical scale of the math waveform to 1 V. Command message: *MTVD 1V* 



| MATH             | MATH_VERT_POS   MTVP<br>Command/Query                                                                                                                                                                                                     |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The MATH_VERT_POS command sets the vertical position of the math waveform with specified source.                                                                                                                                          |
|                  | The FFT waveform isn't included, but we have another command which called FFTP to set vertical position.                                                                                                                                  |
|                  | The MATH_VERT_POS? query returns the vertical position of the math waveform.                                                                                                                                                              |
| COMMAND SYNTAX   | MATH_VERT_POS <point></point>                                                                                                                                                                                                             |
|                  | <point>:= -255 to 255.</point>                                                                                                                                                                                                            |
|                  | Note:<br>The point represents the screen pixels and is related to<br>the screen center. For example, if the point is 50. The<br>math waveform will be displayed 1 grid above the vertical<br>center of the screen. Namely one grid is 50. |
| QUERY SYNTAX     | MATH_VERT_POS?                                                                                                                                                                                                                            |
| RESPONSE FORMAT  | MATH_VERT_POS <point></point>                                                                                                                                                                                                             |
| EXAMPLE          | When the Math function is on, the following command sets the vertical position of the math waveform to 1 grid above the screen vertical center.<br>Command message:<br><i>MTVP 50</i>                                                     |
| RELATED COMMANDS | FFTP                                                                                                                                                                                                                                      |

**RELATED COMMANDS** 

101



#### MATH

#### DESCRIPTION

The FFT\_CENTER command sets the center frequency when FFT (Fast Fourier Transform) is selected.

FFT\_CENTER | FFTC

Command/Query

The FFT\_CENTER? query returns the current center frequency of FFT waveform.

 COMMAND SYNTAX
 FFT\_CENTER <center>

 <center>:= frequency value with unit (MHz/ kHz/ Hz).

### Note:

If you set the center to a value outside of the legal range, the center value is automatically set to the nearest legal value. Legal values are affected by the Hz/div setting.

•The range for center is related to the horizontal scale of FFT and varied by models. See the math menu of oscilloscope as shown below for details.



# FFT\_CENTER?

FFT\_CENTER <center>

When the Math function is on, the operator is FFT, and the horizontal scale is 100 MHz, the following command sets the center frequency of FFT to 58 MHz.



QUERY SYNTAX

**EXAMPLE** 

**RESPONSE FORMAT** 

# Command message:

FFTC 58MHz

RELATED COMMANDS

FFTT?

Note:

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



| MATH            | FFT_FULLSCREEN   FFTF<br>Command/Query                                                                                                                                   |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The FFT_FULLSCREEN command sets the display mode of FFT waveform.                                                                                                        |
|                 | The FFT_FULLSCREEN? query returns whether the FFT waveform is full screen displayed.                                                                                     |
| COMMAND SYNTAX  | FFT_FULLSCREEN <state></state>                                                                                                                                           |
|                 | <state>:= {OFF,ON,EXCLU}<br/>•OFF — Split Screen.<br/>•ON — Full Screen.<br/>•EXCLU — Exclusive.</state>                                                                 |
| QUERY SYNTAX    | FFT_FULLSCREEN?                                                                                                                                                          |
| RESPONSE FORMAT | FFT_FULLSCREEN <state></state>                                                                                                                                           |
| EXAMPLE         | When the Math function is on, and the operator is FFT, the following command sets the display mode of FFT waveform to Full Screen.<br>Command message:<br><i>FFTF_ON</i> |



| MATH            | FFT_POSITION   FFTP<br>Command/Query                                                                                                                                                  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The FFT_POSITION command sets the vertical offset of FFT waveform. The unit is related to the vertical scale type of the current FFT and the unit of the channel.                     |
|                 | The FFT_POSITION? query returns the current vertical offset of the FFT waveform.                                                                                                      |
|                 | Note:                                                                                                                                                                                 |
|                 | <ul> <li>This command is only valid when the scale type is Vrms.</li> </ul>                                                                                                           |
| COMMAND SYNTAX  | FFT_POSITION <offset></offset>                                                                                                                                                        |
|                 | <offset>:= -24.4*DIV to 15.6*DIV.</offset>                                                                                                                                            |
|                 | Note:                                                                                                                                                                                 |
|                 | If there is no unit (V/mV/uV) added, it defaults to volts                                                                                                                             |
|                 | (V).                                                                                                                                                                                  |
|                 | •If you set the offset to a value outside of the legal range,<br>the center value is automatically set to the nearest legal<br>value. Legal values are affected by the Scale setting. |
| QUERY SYNTAX    | FFT_POSITION?                                                                                                                                                                         |
| RESPONSE FORMAT | FFT POSITION <offset></offset>                                                                                                                                                        |
|                 | <offset>:= Numerical value in E-notation with SI unit.</offset>                                                                                                                       |
| EXAMPLE         | •When the Math function is on, the operator is FFT, and the scale is 10 mV, the following steps set the offset of FFT waveform to 28 mV.                                              |
|                 | <b>Step 1:</b> Send command to set the scale unit to Vrms.<br>Command message:                                                                                                        |
|                 | FFTU VRMS                                                                                                                                                                             |



**Step 2:** Send command to set the offset to 28 mV. Command message:

FFTP 28mV

•When the Math function is on, the operator is FFT, and the scale is 5 V, the following steps set the offset of FFT waveform to -13.5 V.

Step 1: Send command to set the scale unit to Vrms.

Command message:

# FFTU VRMS

**Step 2:** Send command to set the offset to -13.5 V. Command message:

FFTP -13.5V

RELATED COMMANDS

FFTS FFTU

#### Note:

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



| MATH            | FFT_SCALE   FFTS                                                                                                                                              |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Command/Query                                                                                                                                                 |
| DESCRIPTION     | The FFT_SCALE command sets the vertical scale of FFT waveform. The unit is related to the vertical scale type of the current FFT and the unit of the channel. |
|                 | The FFT_SCALE? query returns the current vertical scale of FFT waveform.                                                                                      |
| COMMAND SYNTAX  | FFT_SCALE <scale></scale>                                                                                                                                     |
|                 | <scale>:={0.1,0.2,0.5,1,2,5,10,20} when scale type is dBVrms or dBm.</scale>                                                                                  |
|                 | <scale>:={0.001,0.002,0.005,0.01,0.02,0.05,0.1,0. 2,0.5,1,<br/>2,5,10,20} when scale type is Vrms.</scale>                                                    |
| QUERY SYNTAX    | FFT_SCALE?                                                                                                                                                    |
| RESPONSE FORMAT | FFT_SCALE <scale></scale>                                                                                                                                     |
|                 | <scale>:= Numerical value in E-notation with SI unit.</scale>                                                                                                 |
| EXAMPLE         | <ul> <li>When the Math function is on, and the operator is FFT,<br/>the following steps set the vertical scale of FFT to 5<br/>dBVrms.</li> </ul>             |
|                 | Step 1: Send command to set the scale unit to dBVrms.                                                                                                         |
|                 | Command message:                                                                                                                                              |
|                 | FFTU DBVRMS                                                                                                                                                   |
|                 | Step 2: Send command to set the scale to 5.                                                                                                                   |
|                 | Command message:                                                                                                                                              |
|                 | FFTS 5                                                                                                                                                        |
|                 | When the Math function is on, and the operator is FFT.                                                                                                        |

107

•When the Math function is on, and the operator is FFI, the following steps set the vertical scale of FFT to 100



mVrms.

Step 1: Send command to set the scale unit to Vrms.

Command message:

FFTU VRMS

Step 2: Send command to set the scale to 0.1. Command message:

FFTS 0.1

**RELATED COMMANDS** 

UNIT FFTU FFTP


MATH FFT\_TDIV? | FFTT? Query DESCRIPTION The FFT\_TDIV? query returns current horizontal scale of FFT waveform. QUERY SYNTAX FFT\_TDIV? **RESPONSE FORMAT** FFT\_TDIV <value> <value>:= Numerical value with measurement unit and physical unit. **EXAMPLE** The following query returns the horizontal scale unit of FFT. Query message: FFTT? Response message: FFTT 100.00MHz

#### Note:

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



| MATH             | FFT_UNIT   FFTU<br>Command/Query                                                                                                                                                                   |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The FFT_UNIT command sets the vertical scale type of FFT (Fast Fourier Transform algorithm).                                                                                                       |
|                  | The FFT_UNIT? query returns the current vertical scale type of FFT waveform.                                                                                                                       |
| COMMAND SYNTAX   | FFT_UNIT <unit><br/><unit>:={VRMS,DBM,DBVRMS}</unit></unit>                                                                                                                                        |
| QUERY SYNTAX     | FFT_UNIT?                                                                                                                                                                                          |
| RESPONSE FORMAT  | FFT_UNIT <unit></unit>                                                                                                                                                                             |
| EXAMPLE          | For SDS1000X-E series, when the Math function is on,<br>and the operator is FFT, the following command sets the<br>vertical scale unit of FFT to dBVrms.<br>Command message:<br><i>FFTU_DBVRMS</i> |
| RELATED COMMANDS | FFTS<br>FFTP                                                                                                                                                                                       |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



MATH

# FFT\_WINDOW | FFTW Command/Query

 DESCRIPTION
 The FFT\_WINDOW command allows the selection of five

 different windowing transforms or operations for the FFT

 (Fast Fourier Transform) function. Each window is useful

 for certain classes of input signals.

The FFT\_WINDOW? query returns the current window of FFT.

COMMAND SYNTAX FFT\_WINDOW <window>

<window>:={RECT,BLAC,HANN,HAMM,FLATTOP}

•RECT — Rectangle is useful for transient signals, and signals where there are an integral number of cycles in the time record.

•BLAC — Blackman reduces time resolution compared to the rectangular window, but it improves the capacity to detect smaller impulses due to lower secondary lobes (provides minimal spectral leakage).

•HANN — Hanning is useful for frequency resolution and general purpose use. It is good for resolving two frequencies that are close together, or for making frequency measurements.

•HAMM - Hamming.

•FLATTOP — Flattop is the best for making accurate amplitude measurements of frequency peaks.

QUERY SYNTAX

FFT\_WINDOW?

FFT\_WINDOW <window>

**RESPONSE FORMAT** 

EXAMPLE

When the Math function is on, and the operator is FFT, the following command sets the FFT window to Hamming. Command message:



FFTW HAMM



# **MEASURE** Commands

The commands in the MEASURE subsystem are used to make parametric measurements on displayed waveforms.

To make a measurement, the portion of the waveform required for that measurement must be displayed on the oscilloscope screen.

- CYMT?
- MEAD
- PACU
- PAVA?
- PASTAT
- MEACL
- MEGS
- MEGA
- MEGB



#### MEASURE

### DESCRIPTION

The CYMOMETER? query measures and returns the frequency counter of the specified source. The counter measurement counts the trigger level crossings at the selected trigger slope and displays the results in MHz/kHz/Hz.

CYMOMETER? | CYMT?

Query

In the following picture, the content of the red box is the measured value of the cymometer.



#### QUERY SYNTAX

RESPONSE FORMAT

# CYMOMETER?

### CYMOMETER <freq>

| Model       | Format of <freq></freq>            |  |  |
|-------------|------------------------------------|--|--|
| SDS1000X-E/ | Numerical value in E-notation with |  |  |
| SDS2000X-E/ | SI unit, such as 1.00E+03Hz.       |  |  |
| SDS1000X-U  |                                    |  |  |
| Others      | Numerical value with measurement   |  |  |
|             | unit and physical unit, such as    |  |  |
|             | 1.00001 kHz.                       |  |  |

#### Note:

When the signal frequency is less than 10 Hz, it returns "10 Hz" or "<10Hz".



#### EXAMPLE

•When the frequency of input signal is I Hz, the following returns the value of cymometer which displaying on the screen of the instrument.

Response message:

CYMT 10Hz

•When the frequency of input signal is 25.000137 MHz, the following returns the value of cymometer which displaying on the screen of the instrument. Response message: *CYMT 2.50E+07Hz* 



#### MEASURE

## MEASURE\_DELAY | MEAD Command/Query

DESCRIPTION

The MEASURE\_DELY command places the instrument in the continuous measurement mode and starts a type of delay measurement.

The MEASURE\_DELY? query returns the measured value of delay type.

COMMAND SYNTAX MEASURE\_DELAY <type>,<sourceA-sourceB>

<sourceA-sourceB>:={C1-C2,C1-C3,C1-C4,C2-C3,C2-C4,C3-C4} <type>:={PHA,FRR,FRF,FFR,FFF,LRR,LRF,LFR,LFF,SK

EW}

| Туре  | Description                               |  |  |
|-------|-------------------------------------------|--|--|
|       | The phase difference between two          |  |  |
| PHA 🔤 | channels.                                 |  |  |
|       | (rising edge - rising edge)               |  |  |
|       | Delay between two channels.               |  |  |
|       | (first rising edge - first rising edge)   |  |  |
|       | Delay between two channels.               |  |  |
|       | (first rising edge - first falling edge)  |  |  |
|       | Delay between two channels.               |  |  |
|       | (first falling edge - first rising edge)  |  |  |
| A     | Delay between two channels.               |  |  |
|       | (first falling edge - first falling edge) |  |  |
|       | Delay between two channels.               |  |  |
|       | (first rising edge - last rising edge)    |  |  |
| LRF   | Delay between two channels.               |  |  |
|       | (first rising edge - last falling edge)   |  |  |
|       | Delay between two channels.               |  |  |
|       | (first falling edge - last rising edge)   |  |  |
|       | Delay between two channels.               |  |  |



|      | (first falling edge - last falling edge) |
|------|------------------------------------------|
| SKEW | Delay between two channels.              |
|      | (edge – edge of the same type)           |

#### QUERY SYNTAX

<sourceA-sourceB>:MEASURE\_DELY? <type>

#### **RESPONSE FORMAT**

<sourceA-sourceB>:MEAD <type>,<value>

| Model       | Format of <value></value>              |  |  |
|-------------|----------------------------------------|--|--|
| SDS1000X-E/ | Numerical value in E-notation with     |  |  |
| SDS2000X-E/ | SI unit, such as 1.24E-04S. Except for |  |  |
| SDS1000X-U  | PHA, it returns as "44.65degree".      |  |  |
| Others      | Numerical value in E-notation with     |  |  |
|             | SI unit, such as 2.06E+01degree.       |  |  |

#### EXAMPLE

The following steps show how to get the measured value of phase between C2 and C4.

**Step 1:** Send the message to set the measurement to Phase between C2 and C4, and then there displays a phase measurement on the screen.

Command message:

MEAD PHA, C2-C4



Step 2: Send the message to get the measured value of phase.



Command message: *C2-C4:MEAD? PHA* 

Response message: *C2-C4:MEAD PHA,-89.46degree* 



MEASURE

## PARAMETER\_CUSTOM | PACU Command

DESCRIPTION The PARAMETER\_CUSTOM command installs a measurement and starts the specified measurement of the specified source.

See the command PAVA? to get the measured value of specified measurement.

See the command MEADto install the measurement of delay class.

COMMAND SYNTAX PARAMETER\_CUSTOM <parameter>,<source>

<source>:= {C1,C2,C3,C4}

<parameter>:={PKPK,MAX,MIN,AMPL,TOP,BASE,CMEA
N,MEAN,STDEV,VSTD,RMS,CRMS,OVSN,FPRE,OVSP,
RPRE,LEVELX,DELAY,TIMEL,PER,FREQ,PWID,NWID,R
ISE,FALL,WID,DUTY,NDUTY,ALL}

**Description of Parameter** 

| -         |                                             |
|-----------|---------------------------------------------|
| Parameter | Description                                 |
| PKPK      | vertical peak-to-peak                       |
| MAX       | maximum vertical value                      |
| MIN       | minimum vertical value                      |
| AMPL      | vertical amplitude                          |
| ТОР       | waveform top value                          |
| BASE      | waveform base value                         |
| CMEAN     | average value in the first cycle            |
| MEAN      | average value                               |
| STDEV     | standard deviation of the data              |
| VSTD      | standard deviation of the data in the first |
|           | cycle                                       |
| RMS       | RMS value                                   |
| CRMS      | RMS value in the first cycle                |



| OVSN   | overshoot of a falling edge                   |
|--------|-----------------------------------------------|
| FPRE   | preshoot of a falling edge                    |
| OVSP   | overshoot of a rising edge                    |
| RPRE   | preshoot of a rising edge                     |
| LEVELX | Level measured at trigger position            |
| PER    | period                                        |
| FREQ   | frequency                                     |
| PWID   | positive pulse width                          |
| NWID   | negative pulse width                          |
| RISE   | rise-time                                     |
| FALL   | fall-time                                     |
| WID    | Burst width                                   |
| DUTY   | positive duty cycle                           |
| NDUTY  | negative duty cycle                           |
| DELAY  | time from the trigger to the first transition |
|        | at the 50% crossing                           |
| TIMEL  | time from the trigger to each rising edge     |
|        | at the 50% crossing                           |
| ALL    | All measurements snapshot, equal to turn      |
|        | on the switch of all measure                  |

EXAMPLE

•The following command sets the type of measure to PKPK of Channel 1. Command message:

## PACU PKPK,C1

Then, you can see the measurement on the screen.





WWW.SIGLENT.COM

•The following command sets the type of measure to ALL of Channel 2. Command message:

#### PACU ALL,C2

Then, you can see a snapshot of all measurements on the screen.



**RELATED COMMANDS** 

PAVA? MEAD MEACL



#### MEASURE

# PARAMETER\_VALUE? | PAVA? Query

#### DESCRIPTION

The PARAMETER\_VALUE query measures and returns the specified measurement value present on the selected waveform.

There are three uses for this command:

| Usage   | Description                                 |  |
|---------|---------------------------------------------|--|
| Usage1  | Specify the source and the measurement.     |  |
|         | See the command "MEAD?" to get the          |  |
|         | measured value of delay measurement.        |  |
| Usage 2 | Use "PAVA? CUST <x>" to get customized.</x> |  |
| Usage 3 | Use "PAVA? STAT <x>" to get statistics.</x> |  |

| QUERY SYNTAX    | • Usage 1 <source/> :PARAMETER_VALUE? <parameter></parameter>                                                             |                                                                                                                                                                                  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | <source/> := {C1,<br><parameter>:={F<br/>N,MEAN,STDE\<br/>RPRE,LEVELX,I<br/>DUTY,NDUTY,D<br/>See the table De</parameter> | C2,C3,C4}<br>PKPK,MAX,MIN,AMPL,TOP,BASE,CMEA<br>V,VSTD,RMS,CRMS,OVSN,FPRE,OVSP,<br>PER,FREQ,PWID,NWID,RISE,FALL,WID,<br>PELAY,TIMEL,ALL}<br>escription of Parameter for details. |
| RESPONSE FORMAT | <source/> :PARA                                                                                                           | METER_VALUE <parameter>,<value></value></parameter>                                                                                                                              |
|                 | <value>:= Nume</value>                                                                                                    | rical value in E-notation with SI unit.                                                                                                                                          |
| QUERY SYNTAX    | ◆ Usage 2<br>PARAMETER_VALUE? CUST <x></x>                                                                                |                                                                                                                                                                                  |
|                 | <x>:= 1 to 5, and</x>                                                                                                     | I ALL                                                                                                                                                                            |
|                 | Custom<br>Parameters                                                                                                      | Description                                                                                                                                                                      |



| CUST1   | The first measure parameter specified by |  |
|---------|------------------------------------------|--|
|         |                                          |  |
| CUST2   | The second measure parameter             |  |
|         | specified by "PACU"                      |  |
| CUST3   | The third measure parameter specified    |  |
|         | by "PACU"                                |  |
| CUST4   | The fourth measure parameter specified   |  |
|         | by "PACU"                                |  |
| CUST5   | The fifth measure parameter specified by |  |
|         | "PACU"                                   |  |
| CUSTALL | All measure parameters specified by      |  |
|         | "PACU"                                   |  |

 Installing the measurement as CUST<x> by using command "PACU", before using usage 2.

•When the number of installed measurements is less than 5 and you send the command "PAVA? CUSTALL", it will return OFF as value for remaining custom parameters.

**RESPONSE FORMAT** 

PARAMETER\_VALUE

CUST<x>:<source>,<parameter>,<value>

<value>:= Numerical value in E-notation with SI unit.

QUERY SYNTAX

Usage 3

PARAMETER\_VALUE? STAT<x>

#### <x>:= 1 to 5

| Custom     | Description                      |
|------------|----------------------------------|
| Parameters |                                  |
| STAT1      | Statistics of the first measure  |
|            | parameter specified by "PACU"    |
| STAT2      | Statistics of the second measure |
|            | parameter specified by "PACU"    |
| STAT3      | Statistics of the third measure  |



|       | parameter specified by "PACU" |      |          |          |         |
|-------|-------------------------------|------|----------|----------|---------|
| STAT4 | Statistics                    | of   | the      | fourth   | measure |
|       | parameter                     | spec | cified b | by "PACI | J"      |
| STAT5 | Statistics                    | of   | the      | fifth    | measure |
|       | parameter                     | spec | cified b | by "PACI | J"      |

Installing the statistics of the measurement as STAT<x> by using command "PACU" and turn on the statistics by using the command "PASTAT" before using usage 3.

 RESPONSE FORMAT
 PARAMETER\_VALUE
 STAT<x>
 <source>

 <parameter>:cur,<value1>,mean,<value2>,min,<value3>,

 max,<value4>,std-dev,<value5>,count,<value6>

| Parameter | Description                       |
|-----------|-----------------------------------|
| cur       | Current value of measurement      |
| mean      | Mean value of measurement         |
| min       | Minimum value of measurement      |
| max       | Maximum value of measurement      |
| std-dev   | Standard deviation of measurement |
| count     | Measurement count                 |

<value>:= Numerical value in E-notation with SI unit.

EXAMPLE

•The following query returns the rise time of Channel 2. Query message:

C2:PAVA? RISE

Response message: *C2:PAVA RISE,3.6E-9S* 

•The following query returns all measurement of Channel

1.

Query message:

#### C1:PAVA? ALL

Response message:



C1:PAVA MAX,2.04E+00V,MIN,-2.16E+00V,PKPK,4.20E+00V,TOP,2.00E+00V,BASE,-2.08E+00V,AMPL,4.08E+00V,MEAN,-1.95E-02V,CMEAN,-6.30E-03V,STDEV,1.46E+00V,VSTD,1.46E+00V,RMS,1.46E+00 V,CRMS,1.46E+00V,OVSN,1.96%,FPRE,0.98%,OVSP,0. 98%,RPRE,0.00%,LEVELX,0.00E+00V,PER,4.00E08S,F REQ,2.50E+07Hz,PWID,\*\*\*\*,NWID,\*\*\*\*,RISE,4.29E-01S,FALL,1.14E-08S,WID,9.99E-08S,DUTY,\*\*\*\*,NDUTY,\*\*\*\*,DELAY,-6.01E-08S,TIMEL,3.97E-08S

•The following steps show how the user customize the measurement parameters and get the measured value. **Step 1:** Send the command to set the measurement parameter.

Command message:

### PACU PKPK,C1

**Step 2:** Send the query to get the measured value. Query message:

PAVA? CUST1

Response message:

#### PAVA CUST1:C1,PKPK,4.08E+00V

**Step 3:** You can also send the query to get the measured value.

Command message:

PAVA? CUSTALL

Response message:

PAVA

CUST1:C1,PKPK,4.08E+00V;CUST2:OFF;CUST3:OFF;C UST4:OFF;CUST5:OFF

•The following steps show how to get the statistical values of user defined measurement parameters.

**Step 1:** Send the command to set the measurement parameter as the first customized parameter.





Command message:

#### PACU FREQ,C3

Step 2: Send the command to turn on the statistics.

Command message:

### PASTAT ON

**Step 3:** Send the query to get the statistical values of the first customized parameter.

Query message:

# PAVA? STAT1

#### Response message:

 PAVA
 STAT1
 C3

 FREQ:cur, 1.00E+06Hz, mean, 1.00E+06Hz, min, 9.97E+05
 Hz, max, 1.00E+06Hz, std-dev, 1.41E+03Hz, count, 171

**RELATED COMMANDS** 

PACU MEAD PASTAT



| MEASURE         | PASTAT<br>Command/Query                                                                                                                                                                |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The PASTAT command controls the operation and display of measurement statistics.                                                                                                       |
|                 | The PASTAT? query return the state of measurement statistics.                                                                                                                          |
| COMMAND SYNTAX  | PASTAT <state></state>                                                                                                                                                                 |
|                 | <state>:={OFF, ON, RESET}<br/>•OFF — turn off the measurement statistics.<br/>•ON — turn on the measurement statistics.<br/>•RESET — reset the measurement statistics.</state>         |
| QUERY SYNTAX    | PASTAT?                                                                                                                                                                                |
| RESPONSE FORMAT | PASTAT <state><br/><state>:={OFF, ON}</state></state>                                                                                                                                  |
| EXAMPLE         | <ul> <li>When the measurement item is turned on, the following command turn on the measurement statistics.</li> <li>Command message:</li> <li>PASTAT ON</li> </ul>                     |
|                 | <ul> <li>If you want to clear all of the statistics accumulated for all periodic measurements, the following command shows.</li> <li>Command message:</li> <li>PASTAT RESET</li> </ul> |

| Model      | Valid? |
|------------|--------|
| SDS1000CFL | no     |
| SDS1000A   | no     |



| SDS1000CML+/CNL+/DL+/E+/F+ | no                         |
|----------------------------|----------------------------|
| SDS2000X                   | no                         |
| SDS1000X                   | no                         |
| SDS1000X-E                 | yes                        |
| SDS2000X-E                 | yes, but query not support |
| SDS1000X-U                 | yes, but query not support |



## MEASURE

# MEASURE\_CLEAR | MEACL Command

| DESCRIPTION    | The MEACL command removes all user specified measurements.                                                                              |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| COMMAND SYNTAX | MEACL                                                                                                                                   |
| EXAMPLE        | When measurement items are turned on, the following command remove all displayed measurement items.<br>Command message:<br><i>MEACL</i> |

## RELATED COMMANDS PACU

## Note:

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



| MEASURE        | MEASURE_GATE_SWITCH   MEGS<br>Command                                                                                                              |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION    | The MEGS command controls the switch of the gate measurement. When the gate is turned on, only the waveform within the threshold will be measured. |
|                | The MEGS? query return the switch of the gate.                                                                                                     |
| COMMAND SYNTAX | MEGS <state></state>                                                                                                                               |
|                | <state>:={OFF, ON}</state>                                                                                                                         |
|                | ■OFF — turn off the gate measurement.                                                                                                              |
|                | ■ON — turn on the gate measurement.                                                                                                                |
| EXAMPLE        | When the measure is turned on, the following command                                                                                               |
|                | turn on the gate measurement.                                                                                                                      |
|                | Command message:                                                                                                                                   |
|                | MEGS ON                                                                                                                                            |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



| MEASURE          | MEASURE_GATEA   MEGA<br>Command                                                                                                                                                                                                                                                                                                                                        |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The MEGA command specifies the position of the measurement gateA.                                                                                                                                                                                                                                                                                                      |
| COMMAND SYNTAX   | MEGA <value></value>                                                                                                                                                                                                                                                                                                                                                   |
|                  | <value>:= value with unit.</value>                                                                                                                                                                                                                                                                                                                                     |
|                  | <ul> <li>Note:</li> <li>You need add the time unit (s/ms/us/ns) to the position. If there is no unit added, it defaults to be S.</li> <li>The range of the value is related to the timebase and horizontal position.</li> <li>The value of gateA must not be greater than the value of gateB, otherwise it will be automatically set to the value of gateB.</li> </ul> |
| EXAMPLE          | <ul> <li>When the gate switch is on, the following command set the position of gateA to 20us.</li> <li>Command message:</li> <li>MEGA 20us</li> </ul>                                                                                                                                                                                                                  |
| RELATED COMMANDS | MEGS<br>MEGB                                                                                                                                                                                                                                                                                                                                                           |

| Model                      | Valid? |  |
|----------------------------|--------|--|
| SDS1000CFL                 | no     |  |
| SDS1000A                   | no     |  |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |  |
| SDS2000X                   | no     |  |
| SDS1000X                   | no     |  |
| SDS1000X-E                 | yes    |  |
| SDS2000X-E                 | yes    |  |
| 131                        |        |  |

SDS1000X-U yes



| MEASURE          | MEASURE_GATEB   MEGB<br>Command                                                                                                                                                                                                                                                                                                                                     |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The MEGB command specifies the position of the measurement gate B.                                                                                                                                                                                                                                                                                                  |
| COMMAND SYNTAX   | MEGB <value></value>                                                                                                                                                                                                                                                                                                                                                |
|                  | <value>:= value with unit.</value>                                                                                                                                                                                                                                                                                                                                  |
|                  | <ul> <li>Note:</li> <li>You need add the time unit (s/ms/us/ns) to the position. If there is no unit added, it defaults to be S.</li> <li>The range of the value is related to the timebase and horizontal position.</li> <li>The value of gateB must not be less than the value of gateA, otherwise it will be automatically set to the value of gateA.</li> </ul> |
| EXAMPLE          | •When the gate switch is on, the following command set<br>the position of gateB to 1.68 ms.<br>Command message:<br><i>MEGB 1.68ms</i>                                                                                                                                                                                                                               |
| RELATED COMMANDS | MEGS<br>MEGA                                                                                                                                                                                                                                                                                                                                                        |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |



| SDS2000X-E | yes |
|------------|-----|
| SDS1000X-U | yes |



# **PASS/FAIL Commands**

The PASS/FAIL subsystem commands and queries control the mask test features.

- PACL
- PFBF
- PFCM
- PFDD?
- PFDS
- PFEN
- PFFS
- PFOP
- PFSC
- PFST



| PASS/FAIL        | PARAMETER_CLR   PACL<br>Command                           |
|------------------|-----------------------------------------------------------|
| DESCRIPTION      | The PARAMETER_CLR command resets the P/F test statistics. |
| COMMAND SYNTAX   | PARAMETER_CLR                                             |
| RELATED COMMANDS | PFDD?                                                     |



| PASS/FAIL       | PF_BUFFER   PFBF<br>Command/Query                                                                                                                                                                                                                                                                                  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The PF_BUFFER command sets the output mode when<br>the test fails. This is the same as pressing the "Output"<br>button on the menu of PASS/FAIL on the front panel.                                                                                                                                                |
|                 | The PF_BUFFER? query returns the current output mode of the pass/fail.                                                                                                                                                                                                                                             |
| COMMAND SYNTAX  | PF_BUFFER <state></state>                                                                                                                                                                                                                                                                                          |
|                 | <state>:={ON,OFF}<br/>•ON — The statistical result is displayed when the failed<br/>waveform is detected, and the buzzer alarm. (not related<br/>to the state of the sound switch)<br/>•OFF — The statistical result is displayed when the failed<br/>waveform is detected, but the buzzer does not alarm.</state> |
| QUERY SYNTAX    | PF_BUFFER?                                                                                                                                                                                                                                                                                                         |
| RESPONSE FORMAT | PF_BUFFER <state></state>                                                                                                                                                                                                                                                                                          |
| EXAMPLE         | When the PASS/FAIL function is on, the following command sets "output" to "ON".<br>Command message:<br><i>PFBF_ON</i>                                                                                                                                                                                              |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |



| SDS1000X-E | yes |
|------------|-----|
| SDS2000X-E | yes |
| SDS1000X-U | yes |



| PASS/FAIL        | PF_CREATEM   PFCM<br>Command                                                                                                                                                                                       |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The PF_CREATEM command creates a Pass/Fail test rule<br>around the current selected channel, using the horizontal<br>adjustment parameters and the vertical adjustment<br>parameters defined by the PFST commands. |
|                  | Note                                                                                                                                                                                                               |
|                  | This command is valid only if the Pass/Fail test function has been opened (PFEN) and is not in operation (PFOP).                                                                                                   |
| COMMAND SYNTAX   | PF_CREATEM                                                                                                                                                                                                         |
| EXAMPLE          | The following steps create the mask of the Pass/Fail.                                                                                                                                                              |
|                  | Step 1: Send command to set the Pass/Fail test enable.                                                                                                                                                             |
|                  | Command message:                                                                                                                                                                                                   |
|                  | PFEN ON                                                                                                                                                                                                            |
|                  | Step 2: Send command to stop the operation.                                                                                                                                                                        |
|                  | Command message:                                                                                                                                                                                                   |
|                  | PFOP OFF                                                                                                                                                                                                           |
|                  | Step 3: Send command to create the rule.                                                                                                                                                                           |
|                  | Command message:                                                                                                                                                                                                   |
|                  | PFCM                                                                                                                                                                                                               |
| RELATED COMMANDS | PFST                                                                                                                                                                                                               |
|                  | PFSC                                                                                                                                                                                                               |
|                  | PFEN                                                                                                                                                                                                               |
|                  | PFOP                                                                                                                                                                                                               |



| PASS/FAIL       | PF_DATADIS?   PFDD?<br>Query                                                                                                                                                   |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The PF_DATADIS? query returns the number of the failed frames, passed frames and total frames which are shown on screen.                                                       |
| COMMAND SYNTAX  | PF_ DATADIS?                                                                                                                                                                   |
| RESPONSE FORMAT | PF_DATADIS FAIL, <num>,PASS,<num>,TOTAL,<num></num></num></num>                                                                                                                |
| EXAMPLE         | The following query returns the number of the message<br>display of the pass/fail.<br>Query message:<br><i>PFDD?</i><br>Response message:<br><i>PFDD FAIL,0,PASS,0,TOTAL,0</i> |



| PASS/FAIL        | PF_DISPLAY   PFDS<br>Command/Query                                                                                                                                                                                                                                        |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The PF_DISPLAY command displays information in Pass/Fail test features.                                                                                                                                                                                                   |
|                  | The PF_DISPLAY? query returns whether the message of Pass/Fail is displayed.                                                                                                                                                                                              |
| COMMAND SYNTAX   | PF_DISPLAY <state></state>                                                                                                                                                                                                                                                |
|                  | <state>:={ON,OFF}</state>                                                                                                                                                                                                                                                 |
| QUERY SYNTAX     | PF_DISPLAY?                                                                                                                                                                                                                                                               |
| RESPONSE FORMAT  | PF_DISPLAY <state></state>                                                                                                                                                                                                                                                |
| EXAMPL           | The following steps display the message of Pass/Fail.<br><b>Step 1:</b> Send command to set the Pass/Fail test enable.<br>Command message:<br><i>PFEN ON</i><br><b>Step 2:</b> Send command to display the message of<br>Pass/Fail.<br>Command message:<br><i>PFDS ON</i> |
| RELATED COMMANDS | PFEN                                                                                                                                                                                                                                                                      |



| PASS/FAIL       | PF_ENABLE   PFEN<br>Command /Query                                                                             |
|-----------------|----------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The PF_ENABLE command enables or disables the Pass/Fail test features.                                         |
|                 | The PF_ENABLE? query returns the current state of mask test features.                                          |
| COMMAND SYNTAX  | PF_ENABLE <state></state>                                                                                      |
|                 | <state>:= {ON,OFF}<br/>•ON — Enable the mask test features.<br/>•OFF — Disable the mask test features.</state> |
| QUERY SYNTAX    | PF_ENABLE?                                                                                                     |
| RESPONSE FORMAT | PF_ENABLE <state></state>                                                                                      |
| EXAMPL          | The following command enables mask test features.<br>Command message:<br><i>PFEN_ON</i>                        |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



| PASS/FAIL       | PF_FAIL_STOP   PFFS<br>Command/Query                                                                                                                                                                                                                                                                                                                              |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The PF_FAIL_STOP command sets the switch of the "stop<br>on fail" function. This is the same as pressing the "Stop on<br>Fail" button on the menu of Pass/Fail on the front panel.                                                                                                                                                                                |
|                 | The PF_FAIL_STOP? query returns the state of the "stop on fail" function.                                                                                                                                                                                                                                                                                         |
| COMMAND SYNTAX  | PF_FAIL_STOP <state></state>                                                                                                                                                                                                                                                                                                                                      |
|                 | <state>:={ON,OFF}</state>                                                                                                                                                                                                                                                                                                                                         |
|                 | <ul> <li>ON — To monitor the failure waveform, the oscilloscope stops testing and enters the "STOP" state. At this point, the screen displays the last statistical result.(if the display is already open)</li> <li>OFF — To monitor the failure waveform, the oscilloscope will continue to test and update the statistics on the screen immediately.</li> </ul> |
| QUERY SYNTAX    | PF_FAIL_STOP?                                                                                                                                                                                                                                                                                                                                                     |
| RESPONSE FORMAT | PF_FAIL_STOP <state></state>                                                                                                                                                                                                                                                                                                                                      |
| EXAMPLE         | The following command sets "stop on fail" to "off".<br>Command message:<br><i>PFFS_OFF</i>                                                                                                                                                                                                                                                                        |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |



| SDS2000X   | no  |
|------------|-----|
| SDS1000X   | no  |
| SDS1000X-E | yes |
| SDS2000X-E | yes |
| SDS1000X-U | yes |


| PASS/FAIL        | PF_OPERATION   PFOP<br>Command/Query                                                        |
|------------------|---------------------------------------------------------------------------------------------|
| DESCRIPTION      | The PF_OPERATION command controls to run or stop Pass/Fail test.                            |
|                  | The PF_OPERATION? query returns the operation state of Pass/Fail test.                      |
| COMMAND SYNTAX   | PF_OPERATION <state></state>                                                                |
|                  | <state>:={ON,OFF}</state>                                                                   |
| QUERY SYNTAX     | PF_OPERATION?                                                                               |
| RESPONSE FORMAT  | PF_OPERATION <state></state>                                                                |
| EXAMPLE          | The following command controls to run Pass/Fail test.<br>Command message:<br><i>PFOP_ON</i> |
| RELATED COMMANDS | PFEN                                                                                        |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



| PASS/FAIL       | PF_SOURCE   PFSC<br>Command/Query                                                                                             |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The PF_SOURCE command sets measurement sources for Pass/Fail test.                                                            |
|                 | The PF_SOURCE? query returns the measurement source for Pass/Fail test.                                                       |
| COMMAND SYNTAX  | PF_SOURCE <trace></trace>                                                                                                     |
|                 | <trace>:={C1,C2,C3,C4}</trace>                                                                                                |
| QUERY SYNTAX    | PF_SOURCE?                                                                                                                    |
| RESPONSE FORMAT | PF_SOURCE <trace></trace>                                                                                                     |
| EXAMPLE         | The following command sets the measurement source to<br>Channel 1 when Channel 1 is on.<br>Command message:<br><i>PFSC C1</i> |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



PF\_SET | PFST PASS/FAIL Command/Query DESCRIPTION The PF\_SET command sets the tolerance in the X/Y direction around the selected waveform defined by PFSC for the Pass/Fail feature. The value of the tolerance will be added and subtracted to horizontal/Vertical values of the waveform to determine the boundaries of the mask. The PF\_ SET? query returns the current setting of the  $\Delta X$ tolerance and  $\Delta Y$  tolerance for Pass/Fail. **COMMAND SYNTAX** PF\_SET XMASK,<div>,YMASK,<div> <div>:= 0.04 to 4.0. Note: Step value is 0.04. QUERY SYNTAX PF\_SET? **RESPONSE FORMAT** PF\_SET XMASK,<div>,YMASK,<div> **EXAMPLE** The following command sets the X mask to 0.4 and the Y mask to 0.52. Command message: PFST XMASK,0.4,YMASK,0.52 **RELATED COMMANDS** PFSC



## **PRINT Commands**

SCDP



| PRINT           | SCREEN_DUMP   SCDP<br>Query                                                                                                                                                                                                                                                                                 |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The SCREEN_DUMP command captures the screen and returns the data of bmp file.                                                                                                                                                                                                                               |
| QUERY SYNTAX    | SCREEN_DUMP                                                                                                                                                                                                                                                                                                 |
| RESPONSE FORMAT | <bmp header=""><bmp data="" screen=""></bmp></bmp>                                                                                                                                                                                                                                                          |
|                 | Note:                                                                                                                                                                                                                                                                                                       |
|                 | You only need to save the returned information in a BMP format file.                                                                                                                                                                                                                                        |
| EXAMPLE         | The following step shows how to transfers the screen information as a file named screen.bmp in a Python shell.                                                                                                                                                                                              |
|                 | Step 1: Send the query to get the bmp data.                                                                                                                                                                                                                                                                 |
|                 | Query message:                                                                                                                                                                                                                                                                                              |
|                 | SCDP                                                                                                                                                                                                                                                                                                        |
|                 | Step 2: Create a new bmp file named "screen.bmp".                                                                                                                                                                                                                                                           |
|                 | Step 3: Write the data to the file.                                                                                                                                                                                                                                                                         |
|                 | <pre>Step 4: Close the file. &gt;&gt;&gt; sds.write("SCDP") (6, <statuscode.success: 0="">) &gt;&gt;&gt; bmp_data = sds.read_raw() &gt;&gt;&gt; bmp_file = open("F:\\screen.bmp", "wb") &gt;&gt;&gt; bmp_file.write(bmp_data) 768067 &gt;&gt;&gt; bmp_file.close() &gt;&gt;&gt;</statuscode.success:></pre> |

(See the code in Screen Dump (SCDP) Example)



## **RECALL Commands**

Recall previously saved oscilloscope setups and reference waveforms.

- \*RCL
- RCPN



#### RECALL

#### DESCRIPTION

The \*RCL command recalls the complete front-panel setup of the instrument from internal memory, using one of the twenty non-volatile panel setups. This command is opposite to the command \*SAV.

See the command RCPN for recalling the setup from external.

**COMMAND SYNTAX** 

\*RCL <num>

<num>:= 0 to 20.

## Note:

•When num is 0, it will recall the default panel setup.

 As shown below, when the progress is finished, there will be a prompt message.



#### **EXAMPLE**

When you have stored the instrument setup in No.3, the following command recalls the setup 3.

Command message:

151

\*RCL 3

**RELATED COMMANDS** 

RCPN \*SAV



## \*RCL Command

## RECALL

## RECALL\_PANEL | RCPN Command

DESCRIPTION The RECALL\_PANEL command recalls a front-panel setup from the specified-DOS path directory in an external memory device.

See the command "\*RCL" for recalling from internal.

COMMAND SYNTAX

RECALL\_PANEL DISK,<device>,FILE,'<filename>'

<device>:= {UDSK}

<filename>:= A waveform file under a legal DOS path.

| Models      | Description                            |
|-------------|----------------------------------------|
| SDS1000X-E/ | The filename string is up to eight     |
| SDS2000X-E/ | characters, with the extension ".xml". |
| SDS1000X-U  |                                        |
| Others      | The filename string is up to eight     |
|             | characters, with the extension ".set". |

## Note:

•See models on page 15.

•For SDS1000X-E series, the '/' character to define the root directory is not supported.

 As shown below, when the progress is finished, there will be a prompt message.





File does not exist! File does not exist!

•As shown below, if the filename is wrong, there will be a prompt message.

#### EXAMPLE

•For SDS1000X-E series, when you plug in an U-disk to the oscilloscope, the following command recalls the frontpanel setup from a file called "TEST.xml" in root directory of the USB memory device.

Command message:

RCPN DISK, UDSK, FILE, 'TEST.xml'

•For SDS1000X-E series, when you plug in an U-disk to the oscilloscope, the following command recalls the frontpanel setup from a file called "TEST.xml" in specifieddirectory of the USB memory device. Command message:

RCPN DISK, UDSK, FILE, '/SAVE/TEST.xml'

**RELATED COMMANDS** 

STPN \*RCL



## **REFERENCE** Commands

The REFERENCE system controls the reference waveforms.

- REFCL
- REFDS
- REFLA
- REFPO
- REFSA
- REFSC
- REFSR



# REFERENCE REF\_CLOSE | REFCL Command DESCRIPTION The REF\_CLOSE command closes the Reference function. COMMAND SYNTAX REF\_CLOSE EXAMPLE The following command closes the Reference function. Command message: REFCL

## Note:

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



| REFERENCE        | REF_DISPLAY   REFDS<br>Command/Query                                                                                 |
|------------------|----------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The REF_DISPLAY command enables or disables the current reference channel shown on the screen.                       |
|                  | The REF_DISPLAY? query returns whether the current reference channel shows on the screen.                            |
| COMMAND SYNTAX   | REF_DISPLAY <state></state>                                                                                          |
|                  | <state>:= {ON,OFF}</state>                                                                                           |
|                  | Note:<br>Only used when the current reference channel has been<br>stored, and the Reference function is enable.      |
| QUERY SYNTAX     | REF_ DISPLAY?                                                                                                        |
| RESPONSE FORMAT  | REF_DISPLAY <state></state>                                                                                          |
| EXAMPLE          | The following command displays the waveform of the current reference channel.<br>Command message:<br><i>REFDS ON</i> |
| RELATED COMMANDS | REFCL                                                                                                                |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |



| SDS1000X-E | yes |
|------------|-----|
| SDS2000X-E | yes |
| SDS1000X-U | yes |



| REFERENCE       | REF_LOCATION   REFLA<br>Command/Query                                                                         |
|-----------------|---------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The REF_LOCATION command selects the current reference channel.                                               |
|                 | The REF_LOCATION? query returns the current reference channel.                                                |
| COMMAND SYNTAX  | REF_LOCATION <location></location>                                                                            |
|                 | <location>:= {REFA,REFB,REFC,REFD}</location>                                                                 |
| QUERY SYNTAX    | REF_LOCATION?                                                                                                 |
| RESPONSE FORMAT | REF_LOCATION <location></location>                                                                            |
| EXAMPLE         | The following command selects REFA as the current reference channel.<br>Command message:<br><i>REFLA REFA</i> |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



| REFERENCE        | REF_POSITION   REFPO<br>Command/Query                                                                                                                                                                                                                                                   |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The REF_POSITION command sets the vertical offset of<br>the current reference channel. This command is only used<br>when the current reference channel has been saved, and<br>the display state is on.                                                                                  |
|                  | The REF_POSITION? query returns the vertical offset of the current reference channel.                                                                                                                                                                                                   |
| COMMAND SYNTAX   | REF_POSITION <offset></offset>                                                                                                                                                                                                                                                          |
|                  | <offset>:= vertical offset value with unit.</offset>                                                                                                                                                                                                                                    |
|                  | Note:<br>If there is no unit (V/mV/uV) added, it defaults to be V.<br>The range of legal offset varies with the value set by the<br>REFSC command. If you set the offset to a value outside<br>of the legal range, the offset value is automatically set to<br>the nearest legal value. |
| QUERY SYNTAX     | REF_POSITION?                                                                                                                                                                                                                                                                           |
| RESPONSE FORMAT  | REF_ POSITION <offset><br/><offset>:= Numerical value in E-notation with SI unit.</offset></offset>                                                                                                                                                                                     |
| EXAMPLE          | When the Reference function is on, REFB has been saved<br>and the scale is 2 V, the following command sets the<br>current reference channel vertical offset to 0.2 V.<br>Command message:<br><i>REFPO 0.2V</i>                                                                          |
| RELATED COMMANDS | REFSC                                                                                                                                                                                                                                                                                   |



| The table below shows | the availability o | f command in each | oscilloscope series. |
|-----------------------|--------------------|-------------------|----------------------|
|                       | <u> </u>           |                   |                      |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



REFERENCE **REF\_SAVE | REFSA** Command DESCRIPTION The REF\_SAVE command saves the waveform (screen range) of the specified source as the reference waveform of the current reference channel to the memory and displays it on the screen. COMMAND SYNTAX **REF\_SAVE EXAMPLE** When the Reference function is on, the REF source is Channel 2, and the REF location is REFA, the following command saves Channel 2 as REFA and displays REFA on screen. Command message:

REFSA

#### Note:

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



| REFERENCE       | REF_SCALE   REFSC<br>Command/Query                                                                                                                                                         |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The REF_SCALE command sets the vertical scale of the current reference channel. This command is only used when the current reference channel has been stored, and the display state is on. |
|                 | The REF_SCALE? query returns the vertical scale of the current reference channel.                                                                                                          |
| COMMAND SYNTAX  | REF_SCALE <scale></scale>                                                                                                                                                                  |
|                 | <scale>:= 500uV to 10V.</scale>                                                                                                                                                            |
|                 | Note:<br>If there is no unit (V/mV/uV) added, it defaults to be V.                                                                                                                         |
| QUERY SYNTAX    | REF_SCALE?                                                                                                                                                                                 |
| RESPONSE FORMAT | REF_SCALE <scale><br/><scale>:= Numerical value in E-notation with SI unit.</scale></scale>                                                                                                |
| EXAMPLE         | When the Reference function is on, and REFA has been saved, the following command sets the vertical scale of REFA to 100 mV.<br>Command message:<br><i>REFSC 100mV</i>                     |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |



| SDS1000X   | no  |
|------------|-----|
| SDS1000X-E | yes |
| SDS2000X-E | yes |
| SDS1000X-U | yes |



| REFERENCE       | REF_SOURCE   REFSR<br>Command /Query                                                                                                                |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The REF_SOURCE command sets the reference waveform source.                                                                                          |
|                 | The REF_SOURCE? query returns the source of the current reference channel.                                                                          |
| COMMAND SYNTAX  | REF_SOURCE <source/>                                                                                                                                |
|                 | <source/> := {C1,C2,C3,C4,MATH}                                                                                                                     |
| QUERY SYNTAX    | REF_SOURCE?                                                                                                                                         |
| RESPONSE FORMAT | REF_SOURCE <source/>                                                                                                                                |
| EXAMPLE         | When Channel 1 is on, the following command selects<br>Channel 1 as the source of current reference channel.<br>Command message:<br><i>REFSR C1</i> |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



## SAVE Commands

Save oscilloscope setups and waveform data.

- \*SAV
- PNSU
- STPN



SAVE

\*SAV Command

## DESCRIPTION The \*SAV command stores the complete front-panel setup of the instrument in internal memory.

This instruction does not support storing to external temporarily. See the command STPN for external storage.

## COMMAND SYNTAX \*SAV <setup\_num>

<setup\_num>:= 1 to 20.

#### Note:

If there is already a file in the specified location, it will overwrite the original file.

EXAMPLE

When you want to save the current setup in panel as shown below, the following command saves it to setup No.3.



## Command message:

\*SAV 3

If you want to recall this setup, send the following command.

Command message:



## \*RCL 3

RELATED COMMANDS

STPN \*RCL



## SAVE

## DESCRIPTION

The PANEL\_SETUP command use the data get from "PNSU?" to set the panel setup.

PANEL\_SETUP | PNSU

Command/Query

The PNSU? query return the data of panel setup from scope.

There are two types of formats for returned data: binary and xml. See the table below for details.

| Format | Description                              |
|--------|------------------------------------------|
| Binary | The returned data is binary, cannot be   |
|        | compatible between versions.             |
|        | Applicable models:                       |
|        | SDS1000CFL                               |
|        | SDS1000A                                 |
|        | SDS1000CML+/CNL+/DL+/E+/F+               |
|        | SDS2000X                                 |
|        | SDS1000X                                 |
|        | SDS1000X-E (2ch, 4ch for V6.1.33 and     |
|        | earlier)                                 |
| Xml    | The returned data is in XML form and     |
|        | compatible between versions.             |
|        | Applicable models:                       |
|        | SDS1000X-E (4ch for V6.1.33R2 and later) |
|        | SDS2000X-E                               |
|        | SDS1000X-U                               |

## Note:

•The query will take time and return a long data, so it is necessary to set the timeout value and the buffer size before query from the scope:

Set the I/O buffer size

The data length is related to the current panel setup. It is recommended to set the read buffer size to 500k



| COMMAND SYNTAX  | <ul> <li>bytes or more.</li> <li>Set the timeout value         The timeout value is related to the network speed or             USB transmission speed. The initial value is generally             2s. It is recommended to set the value to 10s or more.     </li> <li>PANEL_SETUP <header><setup data=""></setup></header></li> </ul>                                                                                                                                                                                                                                                                                                                                                |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | <pre><header>:= Characters in the format of "#9&lt;9-Digits&gt;" is used to describe the length of <setup data="">, which is returned by the query PNSU? <setup data="">:= A setup previously returned by the query PNSU?</setup></setup></header></pre>                                                                                                                                                                                                                                                                                                                                                                                                                               |
| QUERY SYNTAX    | PANEL_SETUP?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RESPONSE FORMAT | PANEL_SETUP <header><setup data=""></setup></header>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EXAMPLE         | The following steps show how to use the query and command to set the panel setup.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | <ul> <li>Step 1: Send the command to set the response format.</li> <li>Command message:</li> <li>CHDR OFF</li> <li>Step 2: Send the query to get the binary data of setup.</li> <li>Command message:</li> <li>PNSU?</li> <li>Response message:</li> <li><header><setup data=""></setup></header></li> <li>Step 3: Change the panel setup, and then send the command to restore setup get from step2.</li> <li>Command message:</li> <li>PNSU <header><setup data=""></setup></header></li> <li>Step 4: You can also save the data in step 2 to a file and make it easier to recall later. Store the file of format according to the returned data. The following program is</li> </ul> |

169



## used as a reference for SDS1004X-E(V6.1.33R2).

```
def main_pnsu():
    _rm = visa.ResourceManager()
    sds = _rn.open_resource("TCPIP0::10.12.255.175::inst0::INSTR")
    sds.chunk_size = 200000
    sds.timeout = 10000
    sds.write("CHDR OFF")
    sds.write("PNSU?")
    data = sds.read_raw()
    f=open("F:\Setup_xml", "wb")
    f.write(data)
    f.close()
    f=open("F:\Setup_XPlus.xml", "r")
    data = f.read()
    f.close()
    f=open("F:\Setup_XPlus.xml", "r")
    data = f.read()
    f.close()
    command = "PNSU "+str(data)
    sds.write_raw(command)
if __name__=='__main__':
    main_pnsu()
```



SAVE

## STORE\_PANEL | STPN Command

## DESCRIPTION The STORE\_PANEL command stores the complete frontpanel setup of the instrument into a file on the specified-DOS path directory in a USB memory device.

See the command "\*SAV" for internal storage.

COMMAND SYNTAX STORE\_PANEL DISK,<device>,FILE,'<filename>'

<device>:= {UDSK}

<filename>:= A waveform file under a legal DOS path.

| Models      | Description                        |
|-------------|------------------------------------|
| SDS1000X-E/ | The filename string is up to eight |
| SDS2000X-E/ | characters, with the extension     |
| SDS1000X-U  | ".xml".                            |
| Others      | The filename string is up to eight |
|             | characters, with the extension     |
|             | ".set".                            |

Note:

•See models on page 15.

•For SDS1000X-E series, the '/' character to define the root directory is not supported.

•As shown below, during the execution of the command, a progress bar will appear on the interface. When the progress is finished, there will be a prompt message.







**EXAMPLE** 

•For SDS1000X-E series, the following command saves the current setup to root directory of the USB memory device in a file called "TEST.xml". Then you can see the file on PC.

Command message:

STPN DISK, UDSK, FILE, 'TEST.xml'



•For SDS1000X-E series, the following command saves the current setup to specified-directory of the USB memory device in a file called "TEST.xml". Then you can



see the file on PC.

## Command message:

STPN DISK,UDSK,FILE,'/SAVE/TEST.xml'

| 1 | TEST.xml<br>xmllfile |       |
|---|----------------------|-------|
|   | 46 KB                |       |
|   |                      | 46 KB |

**RELATED COMMANDS** 

\*SAV RCPN



## **STATUS Commands**

IEEE 488.2 defines data structures, commands, and common bit definitions for status reporting. There are also instrument-defined structures and bits.

An overview of the oscilloscope's status reporting structure is shown in the following commands.

INR?



| STATUS          | INR?<br>Query                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The INR? query reads and clears the contents of INternal state change Register (INR). The INR register records the completion of various internal operations and state transitions.                                                                                                                                                                                                                                                                                                                        |
| QUERY SYNTAX    | INR?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RESPONSE FORMAT | INR <value></value>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | <value>:= 0 to 65535.</value>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | <ul> <li>Note :</li> <li>This query only returns 0 bit and 13 bit.</li> <li>See the table INternal State Register (INR) Structure as shown below for details.</li> </ul>                                                                                                                                                                                                                                                                                                                                   |
| EXAMPLE         | The following steps show the change of INR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | Step 1: When the trigger mode is single, and there is no signal input, send the query.         Response message: <i>INR 0</i> Step 2: Now, input a signal to trigger. The acquisition mode is Stop. Then, send the query.         Response message: <i>INR 1</i> Step 3: Now, change the trigger mode to Auto. Then, send the query.         Response message: <i>INR 1</i> Step 3: Now, change the trigger mode to Single. The acquisition mode changes to be Stop. And then, send the query.         175 |



#### Response message:

#### INR 8193

**Step 5:** After sending the query in step 4, send the query again.

Response message:

## INR 0

**Step 6:** After step 2, not to input the signal, change the trigger mode to single. And then, send the query.

Response message:

INR 8192

## INternal State Register (INR) Structure

| Bit | Bit   | Description                                                               |
|-----|-------|---------------------------------------------------------------------------|
|     | value |                                                                           |
| 15  |       | Not used (always 0)                                                       |
| 14  |       | Not used (always 0)                                                       |
| 13  | 8192  | Trigger is ready                                                          |
| 12  | 4096  | Pass/Fail test detected desired outcome                                   |
| 11  | 2048  | Waveform processing has terminated in Trace D                             |
| 10  | 1024  | Waveform processing has terminated in Trace C                             |
| 9   | 512   | Waveform processing has terminated in Trace B                             |
| 8   | 256   | Waveform processing has terminated in Trace A                             |
| 7   | 128   | A memory card, floppy or hard disk exchange has been detected             |
| 6   | 64    | Memory card, floppy or hard disk has become full in "AutoStore Fill" mode |
| 5   |       | Not use(always 0)                                                         |
| 4   | 16    | A segment of a sequence waveform has been acquired                        |
| 3   | 8     | A time-out has occurred in a data block transfer                          |
| 2   | 4     | A return to the local state is detected                                   |
| 1   | 2     | A screen dump has terminated                                              |
| 0   | 1     | A new signal has been acquired                                            |



## SYSTEM Commands

The SYSTEM subsystem commands control basic system functions of the oscilloscope.

- \*CAL?
- BUZZ
- CONET
- SCSV
- EMOD



| SYSTEM          | *CAL?<br>Query                                                                                                                                       |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The *CAL? query starts the user calibration procedure and return a response.                                                                         |
|                 | The user calibration can quickly make the oscilloscope<br>achieve the best working state, in order to obtain the most<br>accurate measurement value. |
|                 | All function keys have been disabled during the self calibration process.                                                                            |
|                 | Before starting the user calibration procedure, you must disconnect anything from inputs.                                                            |
| QUERY SYNTAX    | *CAL?                                                                                                                                                |
| RESPONSE FORMAT | *CAL 0                                                                                                                                               |
|                 | ■0 — Calibration successful.                                                                                                                         |
| EXAMPLE         | The following query starts a self-calibration.<br>Query message:<br><i>*CAL</i> ?<br>Response message:<br><i>*CAL 0</i>                              |



| SYSTEM          | BUZZER   BUZZ<br>Command/Query                                                        |
|-----------------|---------------------------------------------------------------------------------------|
| DESCRIPTION     | The BUZZER command enables or disables the buzzer.                                    |
|                 | The BUZZER? query returns the switch state of the buzzer.                             |
| COMMAND SYNTAX  | BUZZER <state></state>                                                                |
|                 | <state>:= {ON,OFF}</state>                                                            |
| QUERY SYNTAX    | BUZZER?                                                                               |
| RESPONSE FORMAT | BUZZER <state></state>                                                                |
| EXAMPLE         | The following command enables the oscilloscope buzzer.<br>Command message:<br>BUZZ ON |



| SYSTEM          | COMM_NET   CONET<br>Command/Query                                                                                    |
|-----------------|----------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The COMM_NET command sets the IP address of the oscilloscope's internal network interface.                           |
|                 | When using this command, DHCP should be off.                                                                         |
|                 | The COMM_NET? query returns the IP address of the oscilloscope's internal network interface.                         |
| COMMAND SYNTAX  | COMM_NET <ip_add0>,<ip_add1>,<ip_add2>,<ip_add3></ip_add3></ip_add2></ip_add1></ip_add0>                             |
|                 | < ip_add0 >:= 1 to 223(except 127).<br>< ip_add1 >:= 0 to 255.<br>< ip_add2 >:= 0 to 255.<br>< ip_add3 >:= 0 to 255. |
| QUERY SYNTAX    | COMM_NET?                                                                                                            |
| RESPONSE FORMAT | COMM_NET<br><ip_add0>,<ip_add1>,<ip_add2>,<ip_add3></ip_add3></ip_add2></ip_add1></ip_add0>                          |
| EXAMPLE         | The following command sets the IP address to 10.11.0.230.<br>Command message:<br><i>CONET 10,11,0,230</i>            |


| SYSTEM          | SCREEN_SAVE   SCSV<br>Command/Query                                                                                                                                                                              |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The SCREEN_SAVE command controls the automatic screensaver, which automatically shuts down the internal color monitor after a preset time.                                                                       |
|                 | The SCREEN_SAVE? query returns whether the automatic screensaver feature is on.                                                                                                                                  |
|                 | Note:<br>When the screensaver is enabled, the oscilloscope is still<br>fully functional.                                                                                                                         |
| COMMAND SYNTAX  | SCREEN_SAVE <time></time>                                                                                                                                                                                        |
|                 | <time>:={OFF,1MIN,5MIN,10MIN,30MIN,60MIN}<br/>•OFF — Do not use screensaver.<br/>•Others — When the oscilloscope enters the idle state and<br/>holds for the specified time, screensaver will be enabled.</time> |
| QUERY SYNTAX    | SCREEN_SAVE?                                                                                                                                                                                                     |
| RESPONSE FORMAT | SCREEN_SAVE <time></time>                                                                                                                                                                                        |
| EXAMPLE         | The following command sets the automatic screensaver to 10 minutes.<br>Command message: <i>SCSV 10MIN</i>                                                                                                        |



| SYSTEM          | EduMode   EMOD<br>Command/Query                                                                    |
|-----------------|----------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The command sets the education mode (locks of autosetup, measure and cursors) of the oscilloscope. |
|                 | The query returns the education mode of the oscilloscope.                                          |
| COMMAND SYNTAX  | EduMode <func>,<lock></lock></func>                                                                |
|                 | <func>:={AutoSetup, Measure, Cursors}<br/><lock>:={ON, OFF}</lock></func>                          |
|                 | <ul> <li>ON — Enable the function</li> </ul>                                                       |
|                 | <ul> <li>OFF — Disable the function.</li> </ul>                                                    |
| QUERY SYNTAX    | EduMode? <func></func>                                                                             |
|                 | <func>:={AutoSetup, Measure, Cursors}</func>                                                       |
|                 | Note:                                                                                              |
|                 | The query without parameters will return the lock status of                                        |
|                 | all functions.                                                                                     |
| RESPONSE FORMAT | Query with the parameter "AutoSetup":                                                              |
|                 | EduMode AutoSetup,ON;                                                                              |
|                 | Query with no parameters:                                                                          |
|                 | EduMode                                                                                            |
|                 | AutoSetup, <lock>;Measure,<lock>;Cursors,<lock>;</lock></lock></lock>                              |
| EXAMPLE         | The following command disables the Autosetup function.                                             |
|                 | Command message:                                                                                   |
|                 | EMOD AutoSetup,OFF                                                                                 |
|                 | Query message:                                                                                     |
|                 | EMOD?                                                                                              |
|                 | Response message:                                                                                  |
|                 | AutoSetup,OFF;Measure,ON;Cursors,ON;                                                               |



# **TIMEBASE** Commands

The TIMEBASE subsystem commands control the horizontal (X-axis) functions. The time per division, delay, and reference can be controlled for the main and window (zoomed) time bases.

- TDIV
- TRDL
- HMAG
- HPOS



| TIMEBASE         | TIME_DIV   TDIV<br>Command/Query                                                                                                                                                                                                                                                                            |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TIME_DIV command sets the horizontal scale per division for the main window.                                                                                                                                                                                                                            |
|                  | The TIME_DIV? query returns the current horizontal scale setting in seconds per division for the main window.                                                                                                                                                                                               |
| COMMAND SYNTAX   | TIME_DIV <value></value>                                                                                                                                                                                                                                                                                    |
|                  | <value>:={1NS,2NS,5NS,10NS,20NS,50NS,100NS,200N<br/>S,500NS,1US,2US,5US,10US,20US,50US,100US,200US,<br/>500US,1MS,2MS,5MS,10MS,20MS,50MS,100MS,200MS,<br/>500MS,1S,2S,5S,10S,20S,50S,100S}<br/>•NS — for nanoseconds.<br/>•US — for microseconds.<br/>•MS — for milliseconds.<br/>•S — for seconds.</value> |
|                  | Note:<br>The range of value varies from the models. See the data<br>sheet for details.                                                                                                                                                                                                                      |
| QUERY SYNTAX     | TIME_DIV?                                                                                                                                                                                                                                                                                                   |
| RESPONSE FORMAT  | TIME_DIV <value><br/><value>:= Numerical value in E-notation with SI unit.</value></value>                                                                                                                                                                                                                  |
| EXAMPLE          | The command sets the horizontal scale to 500 µs.<br>Command message:<br><i>TDIV 500US</i>                                                                                                                                                                                                                   |
| RELATED COMMANDS | TRDL<br>HMAG<br>HPOS                                                                                                                                                                                                                                                                                        |



TIMEBASE

## TRIG\_DELAY | TRDL Command/Query

| DESCRIPTION     | The TRIG_DEL/<br>between the trigg<br>on the screen. T<br>the time/division s | AY command sets the time interval ger event and the horizontal center point he maximum position value depends on settings. |
|-----------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                 | <ul> <li>Pre-trigger acqu<br/>occurs. Negative</li> </ul>                     | isition — Data acquired before the trigger trigger delays must be given in seconds.                                        |
|                 | <ul> <li>Post-trigger acq<br/>has occurred.</li> </ul>                        | uisition — Data acquired after the trigger                                                                                 |
|                 | The TRIG_DELA the trigger to the                                              | Y? query returns the current time from horizontal center point in seconds.                                                 |
| COMMAND SYNTAX  | TRIG_DELAY <                                                                  | delay>                                                                                                                     |
|                 | <delay>:= time va</delay>                                                     | alue with unit.                                                                                                            |
|                 | Note:                                                                         |                                                                                                                            |
|                 | •The range of de                                                              | elay is related to the time base. See the                                                                                  |
|                 | data sheet for de                                                             | tails.                                                                                                                     |
|                 | If you set the de                                                             | elay to a value outside of the legal range,                                                                                |
|                 | the delay value                                                               | is automatically set to the nearest legal                                                                                  |
|                 | value.                                                                        |                                                                                                                            |
| QUERY SYNTAX    | TRIG_DELAY?                                                                   |                                                                                                                            |
| RESPONSE FORMAT | TRIG_DELAY <                                                                  | /alue>                                                                                                                     |
|                 | Model                                                                         | Format of <skew></skew>                                                                                                    |
|                 | SDS1000X-E/                                                                   | Numerical value in E-notation with                                                                                         |
|                 | SDS2000X-E/                                                                   | SI unit, such as 1.00E-04 s.                                                                                               |
|                 | SDS1000X-U                                                                    |                                                                                                                            |
|                 | Others                                                                        | Numerical value with measurement                                                                                           |



| unit and physical unit, such as 3.58 ns. |
|------------------------------------------|
|------------------------------------------|

EXAMPLE

When the time base is 1us/div, the following command sets the trigger delay to -4.8 us (pre trigger).
Command message: *TRDL -4.8US*

TRDL -4.000

RELATED COMMANDS

TDIV



| TIMEBASE        | HOR_MAGNIFY   HMAG<br>Command/Query                                                                                                                                                                                                                   |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The HOR_MAGNIFY command sets the zoomed (delayed) window horizontal scale (seconds/div). The main sweep scale determines the range for this command. The maximum value is the TDIV value.                                                             |
|                 | The HOR_MAGNIFY? query returns the current zoomed window scale setting.                                                                                                                                                                               |
| COMMAND SYNTAX  | Format 1:<br>HOR_MAGNIFY <value></value>                                                                                                                                                                                                              |
|                 | <value>:={1NS,2NS,5NS,10NS,20NS,50NS,100NS,200N<br/>S,500NS,1US,2US,5US,10US,20US,50US,100US,200US,<br/>500US,1MS,2MS,5MS,10MS,20MS}<br/>The range of value is related to the current time base. It is<br/>from 1NS to the current time base.</value> |
|                 | Format 2:<br>HOR_MAGNIFY <factor></factor>                                                                                                                                                                                                            |
|                 | <factor>:= 1 to 2,000,000.<br/>The range of <factor> is related to the current time base<br/>and the range of the time base.</factor></factor>                                                                                                        |
|                 | Note:<br>The table on next page shows the available format in each<br>oscilloscope series.                                                                                                                                                            |
| QUERY SYNTAX    | HOR_MAGNIFY?                                                                                                                                                                                                                                          |
| RESPONSE FORMAT | HOR_MAGNIFY <value></value>                                                                                                                                                                                                                           |
|                 | <value>:= Numerical value in E-notation with SI unit.</value>                                                                                                                                                                                         |



### HOR\_MAGNIFY <factor>

EXAMPLE

For SDS1000X-E series, when the time base is 1ms/div, and Zoom function is on, the following command sets the zoomed (delayed) window horizontal scale to 1 us. Command message:

HMAG 1US

**RELATED COMMANDS** 

TDIV

## Format in Each Oscilloscope Series

| Model                      | Command Format |
|----------------------------|----------------|
| SDS1000CFL                 | Format 2       |
| SDS1000A                   | Format 2       |
| SDS1000CML+/CNL+/DL+/E+/F+ | Format 2       |
| SDS2000X                   | Format 2       |
| SDS1000X                   | Format 2       |
| SDS1000X-E                 | Format 1       |
| SDS2000X-E                 | Format 1       |
| SDS1000X-U                 | Format 1       |



#### TIMEBASE

## HOR\_POSITION | HPOS Command/Query

DESCRIPTIONThe HOR\_POSITION command sets the horizontal<br/>position in the zoomed (delayed) view of the main sweep.<br/>The main sweep range and the main sweep horizontal<br/>position determine the range for this command. The value<br/>for this command must keep the zoomed view window<br/>within the main sweep range.

The HOR\_POSITION? query the current horizontal window position setting in the zoomed view.

**COMMAND SYNTAX** 

Format 1: HOR\_POSITION <position>

<position>:= time value with unit.

#### Note:

•You need add the time unit (s/ms/us/ns) to the position. If there is no unit added, it defaults to be S.

•The range of position is related to the main sweep range and the main sweep horizontal position. The range after magnifying which beyond the screen could display, and it will be adjusted to the proper value.

Format 2: HOR\_POSITION <factor\_div>

< factor\_div>:= the factor of zoomed time base.

#### Note:

The table on next page shows the available format in each oscilloscope series.



| QUERY SYNTAX     | HOR_POSITION?                                                           |
|------------------|-------------------------------------------------------------------------|
| RESPONSE FORMAT  | HOR_POSITION <position></position>                                      |
|                  | <position>:= Numerical value in E-notation with SI unit.</position>     |
|                  | HOR_POSITION <factor_div></factor_div>                                  |
| EXAMPLE          | For SDS1000X-E series, when the time base is 10 us/div,                 |
|                  | the horizontal position is 0, Zoom function is on, and the              |
|                  | zoomed scale is 5 us. The range of zoom position is from -              |
|                  | $35\ \text{us}$ to $35\ \text{us}.$ The following command sets the zoom |
|                  | position to 100 ns.                                                     |
|                  | Command message:                                                        |
|                  | HPOS 100ns                                                              |
| RELATED COMMANDS | HMAG                                                                    |
|                  | TDIV                                                                    |

## Format in Each Oscilloscope Series

| Model                      | Command Format |
|----------------------------|----------------|
| SDS1000CFL                 | Format 2       |
| SDS1000A                   | Format 2       |
| SDS1000CML+/CNL+/DL+/E+/F+ | Format 2       |
| SDS2000X                   | Format 2       |
| SDS1000X                   | Format 2       |
| SDS1000X-E                 | Format 1       |
| SDS2000X-E                 | Format 1       |
| SDS1000X-U                 | Format 1       |

TRDL



# **TRIGGER Commands**

The TRIGGER subsystem controls the trigger modes and parameters for each trigger type.

- SET50
- TRCP
- TRLV
- TRLV2
- TRMD
- TRPA
- TRSE
- TRSL
- TRWI



| TRIGGER          | SET50<br>Command                                                                                                                                                                      |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The SET50 command automatically sets the trigger levels to center of the trigger source waveform.                                                                                     |
|                  | When High and Low (dual) trigger levels are used (as Runt triggers, for example), this command has no effect.                                                                         |
| COMMAND SYNTAX   | SET50                                                                                                                                                                                 |
| EXAMPLE          | When the trigger type is edge and the trigger source is<br>Channel 1, the following command sets the trigger level to<br>the center of Channel 1.<br>Command message:<br><i>SET50</i> |
| RELATED COMMANDS | TRLV                                                                                                                                                                                  |



| TRIGGER          | TRIG_COUPLING   TRCP<br>Command/Query                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRIG_COUPLING command sets the input coupling for the selected trigger sources.                                                                                                                                                                                                                                                                                                                                                                              |
|                  | The TRIG_COUPLING? query returns the trigger coupling of the selected source.                                                                                                                                                                                                                                                                                                                                                                                    |
| COMMAND SYNTAX   | <trig_source>:TRIG_COUPLING <trig_coupling></trig_coupling></trig_source>                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | <trig_source>:={C1,C2,C3,C4,EX,EX5}</trig_source>                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | <trig_coupling>:={AC,DC,HFREJ,LFREJ}</trig_coupling>                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | <ul> <li>AC – AC coupling block DC component in the trigger path, removing dc offset voltage from the trigger waveform. Use AC coupling to get a stable edge trigger when your waveform has a large dc offset.</li> <li>DC – DC coupling allows dc and ac signals into the trigger path.</li> <li>HFREJ – HFREJ coupling places a low-pass filter in the trigger path.</li> <li>LFREJ – LFREJ coupling places a high-pass filter in the trigger path.</li> </ul> |
| QUERY SYNTAX     | <trig_source>:TRIG_COUPLING?</trig_source>                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RESPONSE FORMAT  | <trig_source>:TRIG_COUPLING <trig_coupling></trig_coupling></trig_source>                                                                                                                                                                                                                                                                                                                                                                                        |
| EXAMPLE          | The following command sets the coupling mode of the trigger source Channel 2 to AC.<br>Command message:<br><i>C2:TRCP AC</i>                                                                                                                                                                                                                                                                                                                                     |
| RELATED COMMANDS | TRSE                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TRIGGER          | TRIG_LEVEL   TRLV                                                                                                                                                                                                                                                                                                                                                                                                                                                |



WWW.SIGLENT.COM

#### Command/Query

| DESCRIPTION                     | for the active trigger source.                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | When there are two trigger levels to set, this command is<br>used to set the higher trigger level voltage for the specified<br>source. TRLV2 is used to set the lower trigger level<br>voltage.                                                                                                                                                                                                |
|                                 | The TRIG_LEVEL? query returns the trigger level of the current trigger source.                                                                                                                                                                                                                                                                                                                 |
| COMMAND SYNTAX                  | <trig_source>:TRIG_LEVEL <trig_level></trig_level></trig_source>                                                                                                                                                                                                                                                                                                                               |
|                                 | <trig_source>:={C1,C2,C3,C4,EX,EX5}<br/><trig_level>:= -4.5*DIV to 4.5*DIV for internal triggers.<br/><trig_level>:= -3*DIV to 3*DIV for external triggers.</trig_level></trig_level></trig_source>                                                                                                                                                                                            |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | <ul> <li>Note:</li> <li>You need to add the volt unit (V/mV) to the trig_level. If there is no unit added, it defaults to volts (V).</li> <li>An out-of-range value will be adjusted to the closest legal value.</li> </ul>                                                                                                                                                                    |
| QUERY SYNTAX                    | Note:<br>•You need to add the volt unit (V/mV) to the trig_level. If<br>there is no unit added, it defaults to volts (V).<br>•An out-of-range value will be adjusted to the closest legal<br>value.<br><trig_source>:TRIG_LEVEL?</trig_source>                                                                                                                                                 |
| QUERY SYNTAX<br>RESPONSE FORMAT | Note:<br>•You need to add the volt unit (V/mV) to the trig_level. If<br>there is no unit added, it defaults to volts (V).<br>•An out-of-range value will be adjusted to the closest legal<br>value.<br><trig_source>:TRIG_LEVEL?<br/><trig_source>:TRIG_LEVEL <trig_level><br/><trig_level>:=Numerical value in E-notation with SI unit.</trig_level></trig_level></trig_source></trig_source> |



WWW.SIGLENT.COM

## RELATED COMMANDS

TRSE TRLV2



| TRIGGER         | TRIG_LEVEL2   TRLV2<br>Command/Query                                                     |
|-----------------|------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRIG_LEVEL2 command sets the lower trigger level voltage for the specified source.   |
|                 | Higher and lower trigger levels are used with runt /slope triggers.                      |
|                 | The TRIG_LEVEL2? query returns the lower trigger level voltage for the specified source. |
| COMMAND SYNTAX  | <trig_source>:TRIG_LEVEL2 <trig_level></trig_level></trig_source>                        |
|                 | <trig_source>:= {C1.C2.C3.C4}</trig_source>                                              |
|                 | <trig_level>:= -4.5*DIV to 4.5*DIV.</trig_level>                                         |
|                 | Note:                                                                                    |
|                 | •You need add the volt unit (V/mV) to the trig_level. If                                 |
|                 | <ul> <li>An out-of-range value will be adjusted to the closest legal value.</li> </ul>   |
| QUERY SYNTAX    | <trig_source>:TRIG_LEVEL2?</trig_source>                                                 |
| RESPONSE FORMAT | <trig_source>:TRIG_LEVEL2 <trig_level></trig_level></trig_source>                        |
|                 | <trig_level>:=Numerical value in E-notation with SI unit.</trig_level>                   |
| EXAMPLE         | When the trigger type is slope, the following steps set the                              |
|                 | high trigger level of Channel 2 to 3.5 V, and the low trigger                            |
|                 | level of Channel 2 to 800 mV.                                                            |
|                 | Step 1: Send the command to set high trigger level.                                      |
|                 | Command message:                                                                         |
|                 | C2:TRLV 3.5V                                                                             |
|                 | Step 2: Send the command to set low trigger level.                                       |



## Command message:

C2:TRLV2 800mV

**RELATED COMMANDS** 

TRSE TRLV



| TRIGGER        | TRIG_MODE   TRMD<br>Command/Query                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION    | The TRIG_MODE command selects the trigger sweep mode.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | The TRIG_MODE? query returns the current trigger sweep mode.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COMMAND SYNTAX | TRIG_MODE <mode></mode>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | <mode>:= {AUTO,NORM,SINGLE,STOP}<br/>•AUTO — When AUTO sweep mode is selected, the<br/>oscilloscope begins to search for the trigger signal that<br/>meets the conditions.<br/>If the trigger signal is satisfied, the running state on the top<br/>left corner of the user interface shows Trig'd, and the<br/>interface shows stable waveform.<br/>Otherwise, the running state always shows Auto, and the<br/>interface shows unstable waveform.</mode>                                  |
|                | <ul> <li>NORM — When NORMAL sweep mode is selected, the oscilloscope enters the wait trigger state and begins to search for trigger signals that meet the conditions.</li> <li>If the trigger signal is satisfied, the running state shows Trig'd, and the interface shows stable waveform.</li> <li>Otherwise, the running state shows Ready, and the interface displays the last triggered waveform (previous trigger) or does not display the waveform (no previous trigger).</li> </ul> |
|                | <ul> <li>SINGLE – When SINGLE sweep mode is selected, the backlight of SINGLE key lights up, the oscilloscope enters the waiting trigger state and begins to search for the trigger signal that meets the conditions.</li> <li>If the trigger signal is satisfied, the running state shows</li> </ul>                                                                                                                                                                                       |

198



|                  | Trig'd, and the interface shows stable waveform. Then, the<br>oscilloscope stops scanning, the RUN/STOP key is red<br>light, and the running status shows Stop.<br>Otherwise, the running state shows Ready, and the<br>interface does not display the waveform. |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | <ul> <li>STOP — STOP is a part of the option of this command,<br/>but not a trigger mode of the oscilloscope.</li> </ul>                                                                                                                                         |
| QUERY SYNTAX     | TRIG_MODE?                                                                                                                                                                                                                                                       |
| RESPONSE FORMAT  | TRIG_MODE <mode></mode>                                                                                                                                                                                                                                          |
| EXAMPLE          | The following command sets the trigger mode to Normal.<br>Command message:<br><i>TRMD NORM</i>                                                                                                                                                                   |
| RELATED COMMANDS | ARM<br>STOP                                                                                                                                                                                                                                                      |



| TRIGGER         | TRIG_PATTERN   TRPA<br>Command/Query                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRIG_PATTERN command specifies the channel values to be used in the pattern trigger and sets the condition of the pattern trigger.                                                                                                                                                                                                                                                                                                      |
|                 | The TRIG_PATTERN? query returns channel values and the condition of the pattern trigger.                                                                                                                                                                                                                                                                                                                                                    |
| COMMAND SYNTAX  | TRIG_PATTERN<br><source/> , <status>[,<source/>,<status>[,<source/>,<status><br/>[,<source/>,<status>]]],STATE,<condition></condition></status></status></status></status>                                                                                                                                                                                                                                                                  |
|                 | < source >:={C1,C2,C3,C4}<br><status>:={X,L,H}<br/>&lt; condition &gt;:={AND,OR,NAND,OR}<br/>•X — Ignore this channel. When all channels are set to X,<br/>the oscilloscope will not trigger.<br/>•L — Low level.(lower than the threshold level of the<br/>channel)<br/>•H — High level.(higher than the threshold level of the<br/>channel)<br/><b>Note:</b><br/>The status of source can only be set when the source is<br/>on.</status> |
| QUERY SYNTAX    | TRIG_PATTERN?                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RESPONSE FORMAT | TRIG_PATTERN<br><source/> , <status>,<source/>,<status>,<source/>,<status>,<br/><source/>,<status>,STATE,<condition></condition></status></status></status></status>                                                                                                                                                                                                                                                                        |
| EXAMPLE         | When the trigger type is Pattern, and Channel 2 & Channel 3 are on, the following command sets the $200$                                                                                                                                                                                                                                                                                                                                    |



Channel 2 and Channel 3 to low and the condition to AND. Command message: *TRPA C2,L,C3,L,STATE,AND* 



### TRIGGER

## TRIG\_SELECT | TRSE Command/Query

## DESCRIPTION

The TRIG\_SELECT command selects the condition that will trigger the acquisition of waveforms.

Depending on the trigger type, additional parameters must be specified. These additional parameters are grouped in pairs. The first in the pair names the variable to be modified, while the second gives the new value to be assigned. Pairs may be given in any order and restricted to those variables to be changed.

The TRIG\_SELECT? query returns the current trigger condition.

| Parameter description |          |    |                       |
|-----------------------|----------|----|-----------------------|
| SLEW                  | Slope    | IL | Interval larger       |
| GLIT                  | Glitch/  | IS | Interval smaller      |
|                       | Pulse    |    |                       |
| INTV                  | Interval | 12 | Interval in range     |
| DROP                  | Dropout  | 11 | Interval out of range |
| SR                    | Source   | PL | Pulse larger          |
| TI                    | Time     | PS | Pulse smaller         |
| HT                    | Hold     | P2 | Pulse in range        |
|                       | type/    |    |                       |
|                       | Limit    |    |                       |
|                       | range    |    |                       |
| ΗV                    | Hold     | P1 | Pulse out of range    |
|                       | value/   |    |                       |
|                       | Limit    |    |                       |
|                       | value    |    |                       |

COMMAND SYNTAX (FOR ALL BUT TV) TRIG\_SELECT <trig\_type>,SR,<source>,HT,<hold\_type>,HV,<hold\_value 1>[,HV2,<hold\_value2>]



<trig\_type>:={EDGE,SLEW,GLIT,INTV,RUNT,DROP} <source>:={C1,C2,C3,C4,LINE,EX,EX5}

#### Note:

LINE/EX/EX5 can only be selected when the trigger type is Edge.

<hold\_type>:={TI,OFF} for EDGE trigger. <hold\_type>:={TI} for DROP trigger. <hold\_type>:={PS,PL,P2,P1}for GLIT/RUNT trigger. <hold\_type>:={IS,IL,I2,I1} for SLEW/INTV trigger. <hold\_value1>:= a time value with unit. <hold\_value2>:= a time value with unit.

#### Note:

If there is no unit (S/mS/uS/nS) added, it defaults to be S.
The range of hold\_values varies from trigger types.
[80nS, 1.5S] for Edge trigger, and [2nS, 4.2S] for others.

QUERY SYNTAX

TRIG\_SELECT?

RESPONSE FORMAT

EXAMPLE

TRIG\_SELECT <trig\_type>,SR,<source>,HT,<hold\_type>,HV,<hold\_value 1>[,HV2,<hold\_value2>]

•When you want to set trigger type to Edge, trigger source to Channel 1, hold type to TIME, and the time value to 1.43uS, the following comes true.

Command message: *TRSE EDGE,SR,C1,HT,TI,HV,1.43uS* 

•When you want to set trigger type to Pulse, trigger source to Channel 2, limit range to [5nS, 1uS], the following comes true.

Command message:





## TRSE GLIT,SR,C2,HT,P2,HV,5nS,HV2,1uS

•When you want to set trigger type to Dropout, trigger source to Channel 4, overtime value to 2.8 ms, the following comes true.

Command message: TRSE DROP,SR,C4,HT,TI,HV,2.8mS

### TV COMMAND SYNTAX

<trig\_type>,SR,<source>,STAN,<standard>,SYNC,<sync\_ type>[,LINE,<line>[,FLD,<field>]]

| Parameter description |          |  |
|-----------------------|----------|--|
| STAN                  | Standard |  |
| FLD                   | field    |  |
| CUST                  | Custom   |  |

<trig\_type>:= {TV}

TRIG\_SELECT

<source>:={C1,C2,C3,C4}

<standard>:={NTSC,PAL,720P/50,720P/60,1080P/50,108 0P/60,1080I/50,1080I/60, CUST}

= allow triggering on a specific line of video. The line number limits vary with the standard and mode, as shown in the following table.

TV Trigger Line Number Limits

| standard | Mode     |          |          |
|----------|----------|----------|----------|
|          | Line     | Field1   | Field2   |
| NTSC     |          | 1~263    | 1 to 262 |
| PAL      |          | 1 to 313 | 1 to 312 |
| 720P/50  | 1 to 750 |          |          |
| 720P/60  | 1 to 750 |          |          |
| 1080P/50 | 1- 1125  |          |          |
| 1080P/60 | 1- 1125  |          |          |
| 10801/50 |          | 1 to 563 | 1 to 562 |
| 10801/60 |          | 1 to 563 | 1 to 562 |



CUST 1 to number of Lines <field>:= [1,2] for NTSC/PAL/1080I/50/1080I/60 <field>:=1 to <field\_count>for CUST. <field\_count>:=1 to 8 depending on the interlace. Note: Field can only be selected when the standard is NTSC/PAL/1080I/50/1080I/60/CUST. **TV QUERY SYNTAX** TRIG\_SELECT? TV RESPONSE FORMAT TRIG SELECT <trig\_type>,SR,<source>,STAN,<standard>,SYNC,<sync\_ type>[,LINE,<line>[,FLD,<field>]] **TV EXAMPLE** When you want to set trigger type to Video, trigger source to Channel 1, standard to NTSC, and SYNC to ANY, the following comes true. Command message: TRSE TV,SR,C1,STAN,NTSC,SYNC,ANY When you want to set trigger type to Video, trigger source to Channel 1, standard to PAL, Line to 300, and Field to 2, the following comes true. Command message: TRSE TV,SR,C1,STAN,PAL,SYNC,SELECT,LINE,300,FLD,2 When you want to set trigger type to Video, trigger source to Channel 2, standard to 1080P/50, and Line to 200, the following comes true. Command message:

TRSE

TV,SR,C2,STAN,1080P/50,SYNC,SELECT,LINE,200



WWW.SIGLENT.COM



| TRIGGER          | TRIG_SLOPE   TRSL<br>Command/Query                                                                                                                                              |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRIG_SLOPE command sets the trigger slope of the specified trigger source.                                                                                                  |
|                  | The TRIG_SLOPE? query returns the trigger slope of the selected source.                                                                                                         |
| COMMAND SYNTAX   | <trig_source>:TRIG_SLOPE <trig_slope></trig_slope></trig_source>                                                                                                                |
|                  | <trig_source>:={C1,C2,C3,C4,EX,EX5}<br/><trig_slope>:={NEG,POS,WINDOW} for edge trigger.<br/><trig_slope>:={NEG,POS} for other trigger.</trig_slope></trig_slope></trig_source> |
|                  | ■NEG — falling edg.                                                                                                                                                             |
|                  | ■POS — rising edge.                                                                                                                                                             |
|                  | <ul> <li>WINDOW — altering edge.</li> </ul>                                                                                                                                     |
| QUERY SYNTAX     | <trig_source>:TRIG_SLOPE?</trig_source>                                                                                                                                         |
| RESPONSE FORMAT  | <trig_source>:TRIG_SLOPE <trig_slope></trig_slope></trig_source>                                                                                                                |
| EXAMPLE          | The following command sets the trigger slope of Channel                                                                                                                         |
|                  | 2 to negative.                                                                                                                                                                  |
|                  | Command message:                                                                                                                                                                |
|                  | C2:TRSL NEG                                                                                                                                                                     |
| RELATED COMMANDS | TRSE                                                                                                                                                                            |



| TRIGGER          | TRIG_WINDOW   TRWI<br>Command/Query                                                                                                                                                 |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRIG_WINDOW command sets the relative height of the two trigger line of the trigger window type.                                                                                |
|                  | Note:<br>•This command is only valid when the window type is<br>relative.                                                                                                           |
|                  | <ul> <li>The TRIG_WINDOW? query returns relative height of the<br/>two trigger line of the trigger window type.</li> </ul>                                                          |
| COMMAND SYNTAX   | TRIG_WINDOW <value></value>                                                                                                                                                         |
|                  | <value>:= 0 to 9*DIV when the center level is 0.</value>                                                                                                                            |
|                  | Note:<br>•You need add the volt unit (V/mV) to the value. If there is<br>no unit added, it defaults to be V.<br>•The range of value is related to the center value of the<br>level. |
| QUERY SYNTAX     | TRIG_WINDOW?                                                                                                                                                                        |
| RESPONSE FORMAT  | TRIG_WINDOW <value><br/><value>:= Numerical value in E-notation with SI unit.</value></value>                                                                                       |
| EXAMPLE          | When the window type is relative, and the center level is 1 V, the following command sets the relative height of the two trigger line to 2 V.<br>Command message:<br><i>TRWI 2V</i> |
| RELATED COMMANDS | TRLV<br>TRLV2                                                                                                                                                                       |



## SERIAL TRIGGER Commands

To set up a serial trigger, set the trigger type to Serial using the command TRSE SERIAL. Then set the appropriate trigger criteria according to serial trigger type (using TRIIC:CON, etc.)

These commands are used for the following serial bus protocols: I2C, SPI, UART, CAN, and LIN.

- TRIIC:SCL
- TRIIC:SDA
- TRIIC:CON
- TRIIC:ADDR
- TRIIC:DATA
- TRIIC:DAT2
- TRIIC:QUAL
- TRIIC:RW
- TRIIC:ALEN
- TRIIC:DLEN
- TRSPI:CLK
- TRSPI:CLK:EDGE
- TRSPI:CLK:TIM
- TRSPI:MOSI
- TRSPI:MISO
- TRSPI:CSTP
- TRSPI:CS
- TRSPI:NCS
- TRSPI:TRTY
- TRSPI:DATA
- TRSPI:DLEN
- TRSPI:BIT
- TRUART:RX
- TRUART:TX
- TRUART:TRTY
- TRUART:CON
- TRUART:QUAL
- TRUART:DATA



- TRUART:BAUD
- TRUART:DLEN
- TRUART:PAR
- TRUART:POL
- TRUART:STOP
- TRUART:BIT
- TRCAN:CANH
- TRCAN:CON
- TRCAN:ID
- TRCAN:IDL
- TRCAN:DATA
- TRCAN:DAT2
- TRCAN:BAUD
- TRLIN:SRC
- TRLIN:CON
- TRLIN:ID
- TRLIN:DATA
- TRLIN:DAT2
- TRLIN:BAUD

## Availability of Serial Trigger Commands in Each Oscilloscope Series

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | no     |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | yes    |
| SDS2000X-E                 | yes    |
| SDS1000X-U                 | yes    |



| SERIAL TRIGGER   | TRIIC:SCL<br>Command/Query                                                                     |
|------------------|------------------------------------------------------------------------------------------------|
|                  | Command/ edory                                                                                 |
| DESCRIPTION      | The TRIIC:SCL command sets the source and threshold for the serial clock (SCL) of IIC trigger. |
|                  |                                                                                                |
|                  | The TRIIC:SCL? query returns the source and threshold                                          |
|                  | for the serial clock (SCL) of IIC trigger.                                                     |
| COMMAND SYNTAX   | TRIG_IIC:SCL <source/> [, <threshold>]</threshold>                                             |
|                  | <source/> :={C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7,D8,                                           |
|                  | D9,D10,D11,D12,D13,D14,D15}                                                                    |
|                  | <pre><threshold>:= value with unit. It is necessary to set when</threshold></pre>              |
|                  | the source is analog channel.                                                                  |
|                  | Note:                                                                                          |
|                  | •You need add the volt unit (V/mV) to the threshold. If                                        |
|                  | there is no unit added, it defaults to be V.                                                   |
|                  | •The range of threshold is related to the vertical scale of                                    |
|                  | the source.                                                                                    |
| QUERY SYNTAX     | TRIIC:SCL?                                                                                     |
| RESPONSE FORMAT  | TRIIC:SCL <source/> [, <threshold>]</threshold>                                                |
|                  | <threshold>:= numerical value in E-notation with SI unit.</threshold>                          |
| EXAMPLE          | When the serial protocol is IIC, the following command                                         |
|                  | sets the source of SCL to channel3 and the threshold to                                        |
|                  | 200 mV.                                                                                        |
|                  | Command message:                                                                               |
|                  | TRIIC:SCL C3,0.2V                                                                              |
| RELATED COMMANDS | TRIIC:SDA                                                                                      |



211

| SERIAL TRIGGER   | TRIIC:SDA<br>Command/Query                                                                                                                                                                                             |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRIIC:SDA command sets the source and threshold for the serial data input channel (SDA) of IIC trigger.                                                                                                            |
|                  | The TRIIC:SDA? query returns the source and threshold for the serial data input channel (SDA) of IIC trigger.                                                                                                          |
| COMMAND SYNTAX   | TRIG_IIC:SDA <source/> [, <threshold>]</threshold>                                                                                                                                                                     |
|                  | <source/> :={C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7,D8,<br>D9,D10,D11,D12,D13,D14,D15}<br><threshold>:= value with unit. It is necessary to set when<br/>the source is analog channel.</threshold>                        |
|                  | <ul> <li>Note:</li> <li>You need add the volt unit (V/mV) to the threshold. If there is no unit added, it defaults to be V.</li> <li>The range of threshold is related to the vertical scale of the source.</li> </ul> |
| QUERY SYNTAX     | TRIIC:SDA?                                                                                                                                                                                                             |
| RESPONSE FORMAT  | TRIIC:SDA <source/> [, <threshold>]</threshold>                                                                                                                                                                        |
|                  | <threshold>:= numerical value in E-notation with SI unit.</threshold>                                                                                                                                                  |
| EXAMPLE          | When the serial protocol is IIC, the following command sets the source of SDA to channel3 and the threshold to 200 mV.<br>Command message:<br><i>TRIIC:SDA C3,0.2V</i>                                                 |
| RELATED COMMANDS | TRIIC:SCL                                                                                                                                                                                                              |



212

| SERIAL TRIGGER  | TRIIC:CON<br>Command/Query                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRIIC:CON command sets the trigger condition of IIC trigger.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | The TRIIC:CON? query returns the trigger condition of IIC trigger.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| COMMAND SYNTAX  | TRIG_IIC:CON <condition></condition>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | <condition>:={START,STOP,RESTART,NOACK,EEPRO<br/>M,7ADDA,10ADDA,DALENTH}</condition>                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | <ul> <li>START- Start condition.</li> <li>STOP- Stop condition.</li> <li>RESTART-Another start condition occurs before a stop condition.</li> <li>NOACK- Missing acknowledge.</li> <li>EEPROM- EEPROM frame containing (Start:Control byte:R:Ack:Data).</li> <li>7ADDA- 7-bit address frame containing (Start:Address7:R/W:Ack:Data:Data2).</li> <li>10ADDA-10-bit address frame containing (Start:Address10:R/W:Ack:Data:Data2).</li> <li>DALENTH- specifie a search based on address length and data length.</li> </ul> |
| QUERY SYNTAX    | TRIIC:CON?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RESPONSE FORMAT | TRIIC:CON <condition></condition>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EXAMPLE         | When the serial protocol is IIC, the following command sets the trigger condition to 7 ADD&Data.<br>Command message:<br><i>TRIIC:CON 7ADDA</i>                                                                                                                                                                                                                                                                                                                                                                            |



RELATED COMMANDS

TRIIC:ADDR TRIIC:DATA TRIIC:DAT2



| SERIAL TRIGGER  | TRIIC:ADDR<br>Command/Query                                                                                                                                                                                         |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRIIC:ADDR command sets the address value used<br>for the IIC trigger when the trigger condition is set to<br>7ADDA or 10ADDA.                                                                                  |
|                 | The TRIIC:ADDR? query returns the address value when the trigger condition is set to 7ADDA or 10ADDA.                                                                                                               |
| COMMAND SYNTAX  | TRIIC:ADDR <value></value>                                                                                                                                                                                          |
|                 | <value>:= 0 to 2<sup>n</sup> when n is the address length(7 or 10)</value>                                                                                                                                          |
|                 | Note:                                                                                                                                                                                                               |
|                 | ■Use the don't care data (128) to ignore the address value                                                                                                                                                          |
|                 | when trigger condition is 7ADDA.                                                                                                                                                                                    |
|                 | •Use the don't care data (1024) to ignore the address                                                                                                                                                               |
|                 | value when trigger condition is 10ADDA.                                                                                                                                                                             |
| QUERY SYNTAX    | TRIIC:ADDR?                                                                                                                                                                                                         |
| RESPONSE FORMAT | TRIIC:ADDR <value></value>                                                                                                                                                                                          |
| EXAMPLE         | <ul> <li>When the serial protocol is IIC and the trigger condition is<br/>10ADD&amp;Data, the following command sets the address<br/>value to 0x122.</li> <li>Command message:<br/><i>TRIIC:ADDR 290</i></li> </ul> |
|                 | •When the serial protocol is IIC and the trigger condition is                                                                                                                                                       |
|                 | 10ADD&Data, the following command ignore the address                                                                                                                                                                |
|                 | value.                                                                                                                                                                                                              |
|                 | Command message:                                                                                                                                                                                                    |
|                 | TR//0 1000 (00)                                                                                                                                                                                                     |

TRIIC:ADDR 1024



215

## RELATED COMMANDS

TRIIC:CON


| SERIAL TRIGGER   | TRIIC:DATA<br>Command/Query                                                                                                                                                                                     |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRIIC:DATA command sets the data1 value used for IIC trigger when the trigger condition is set to 7ADDA, 10ADDA or EEPROM.                                                                                  |
|                  | The TRIIC:DATA? query returns the data1 value used for IIC trigger when the trigger condition is set to 7ADDA, 10ADDA or EEPROM.                                                                                |
| COMMAND SYNTAX   | TRIIC:DATA <value></value>                                                                                                                                                                                      |
|                  | <value>:= 0 to 256</value>                                                                                                                                                                                      |
|                  | <b>Note</b> :<br>Use the don't care data (256) to ignore the data value.                                                                                                                                        |
| QUERY SYNTAX     | TRIIC:DATA?                                                                                                                                                                                                     |
| RESPONSE FORMAT  | TRIIC:DATA <value></value>                                                                                                                                                                                      |
| EXAMPLE          | <ul> <li>When the serial protocol is IIC and the trigger condition is<br/>10ADD&amp;Data, the following command sets the data1<br/>value to 0x29.</li> <li>Command message:<br/><i>TRIIC:DATA 41</i></li> </ul> |
|                  | <ul> <li>When the serial protocol is IIC and the trigger condition is<br/>10ADD&amp;Data, the following command ignore the data<br/>value.</li> <li>Command message:<br/><i>TRIIC:DATA 256</i></li> </ul>       |
| RELATED COMMANDS | TRIIC:CON<br>TRIIC:DAT2                                                                                                                                                                                         |



## TRIIC:ADDR



| SERIAL TRIGGER   | TRIIC:DAT2<br>Command/Query                                                                                                                                                                                     |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRIIC:DAT2 command sets the data2 value used for IIC trigger when the trigger condition is set to 7ADDA or 10ADDA.                                                                                          |
|                  | The TRIIC:DAT2? query returns the data2 value used for IIC trigger when the trigger condition is set to 7ADDA or 10ADDA.                                                                                        |
| COMMAND SYNTAX   | TRIIC:DAT2 <value></value>                                                                                                                                                                                      |
|                  | <value>:= 0 to 256</value>                                                                                                                                                                                      |
|                  | Note:                                                                                                                                                                                                           |
|                  | Use the don't care data (256) to ignore the data value.                                                                                                                                                         |
| QUERY SYNTAX     | TRIIC:DAT2?                                                                                                                                                                                                     |
| RESPONSE FORMAT  | TRIIC:DAT2 <value></value>                                                                                                                                                                                      |
| EXAMPLE          | <ul> <li>When the serial protocol is IIC and the trigger condition is<br/>10ADD&amp;Data, the following command sets the data2<br/>value to 0x29.</li> <li>Command message:<br/><i>TRIIC:DAT2 41</i></li> </ul> |
|                  | <ul> <li>When the serial protocol is IIC and the trigger condition is<br/>10ADD&amp;Data, the following command ignore the data2<br/>value.</li> <li>Command message:<br/><i>TRIIC:DAT2 256</i></li> </ul>      |
| RELATED COMMANDS | TRIIC:CON<br>TRIIC:DATA<br>TRIIC:ADDR                                                                                                                                                                           |



| SERIAL TRIGGER   | TRIIC:QUAL<br>Command/Query                                                                                                                                                                        |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRIIC:QUAL command sets the IIC data qualifier when the trigger condition is set to EEPROM.                                                                                                    |
|                  | The TRIIC:QUAL? query returns the data qualifier used for the IIC trigger is set to EEPROM.                                                                                                        |
| COMMAND SYNTAX   | TRIIC:QUAL <value></value>                                                                                                                                                                         |
|                  | <value>:= {EQUAL,MORE,LESS}<br/>•EQUAL— sets the IIC data qualifier to equal.<br/>•MORE— sets the IIC data qualifier to greater than.<br/>•LESS— sets the IIC data qualifier to less than.</value> |
| QUERY SYNTAX     | TRIIC:QUAL?                                                                                                                                                                                        |
| RESPONSE FORMAT  | TRIIC:QUAL <value></value>                                                                                                                                                                         |
| EXAMPLE          | When the serial protocol is IIC and the trigger condition is<br>EEPROM, the following command sets the data qualifier<br>to equal.<br>Command message:<br><i>TRIIC:QUAL EQUAL</i>                  |
| RELATED COMMANDS | TRIIC:CON<br>TRIIC:DATA<br>TRIIC:ADDR                                                                                                                                                              |



| SERIAL TRIGGER   | TRIIC:RW<br>Command/Query                                                                                                                                                             |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRIIC:RW command sets the IIC trigger type to be valid on a Read, Write, or Either condition. Read or write is indicated by the R/W bit in the IIC protocol.                      |
|                  | The TRIIC:RW? query returns the condition on the R/W bit used for the IIC trigger.                                                                                                    |
| COMMAND SYNTAX   | TRIIC:RW <value></value>                                                                                                                                                              |
|                  | <value>:= {READ,WRITE,DONT_CARE}<br/>•READ— sets read as the data direction.<br/>•WRITE— sets write as the data direction.<br/>•DONT_CARE— sets either as the data direction.</value> |
| QUERY SYNTAX     | TRIIC:RW?                                                                                                                                                                             |
| RESPONSE FORMAT  | TRIIC:RW <value></value>                                                                                                                                                              |
| EXAMPLE          | When the serial protocol is IIC and the trigger condition is 10ADD&Data, the following command sets the data direction to write.<br>Command message:<br><i>TRIIC:RW WRITE</i>         |
| RELATED COMMANDS | TRIIC:CON<br>TRIIC:ADDR                                                                                                                                                               |



| SERIAL TRIGGER   | TRIIC:ALEN<br>Command/Query                                                                                                                                                         |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRIIC:ALEN command sets the IIC address type when the trigger condition is set to Data Length.                                                                                  |
|                  | The TRIIC:ALEN? query returns the IIC address type when the trigger condition is set to Data Length.                                                                                |
| COMMAND SYNTAX   | TRIIC:ALEN <value></value>                                                                                                                                                          |
|                  | <value>:= {7BIT,10BIT}</value>                                                                                                                                                      |
| QUERY SYNTAX     | TRIIC:ALEN?                                                                                                                                                                         |
| RESPONSE FORMAT  | TRIIC:ALEN <value></value>                                                                                                                                                          |
| EXAMPLE          | When the serial protocol is IIC and the trigger condition is<br>Data Length, the following command sets the address<br>type to 7 bit.<br>Command message:<br><i>TRIIC:ALEN 7BIT</i> |
| RELATED COMMANDS | TRIIC:CON<br>TRIIC:ADDR                                                                                                                                                             |



| SERIAL TRIGGER   | TRIIC:DLEN<br>Command/Query                                                                                                                                                              |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRIIC:DLEN command sets the length of the data in bytes to be used for IIC trigger if the trigger condition is Data length.                                                          |
|                  | The TRIIC:DLEN? query returns the length of the data in bytes.                                                                                                                           |
| COMMAND SYNTAX   | TRIIC:DLEN <value></value>                                                                                                                                                               |
|                  | <value>:= 1 to 12</value>                                                                                                                                                                |
| QUERY SYNTAX     | TRIIC:DLEN?                                                                                                                                                                              |
| RESPONSE FORMAT  | TRIIC:DLEN <value></value>                                                                                                                                                               |
| EXAMPLE          | When the serial protocol is IIC and the trigger condition is<br>Data Length, the following command sets the length of the<br>data bytes to 8.<br>Command message:<br><i>TRIIC:DLEN 8</i> |
| RELATED COMMANDS | TRIIC:CON<br>TRIIC:ADDR                                                                                                                                                                  |



| SERIAL TRIGGER   | TRSPI:CLK                                                                         |
|------------------|-----------------------------------------------------------------------------------|
|                  | Command/Query                                                                     |
| DECODIDITION     |                                                                                   |
| DESCRIPTION      | The TRSPICLK command sets the source and threshold                                |
|                  | for the serial clock of SPI trigger.                                              |
|                  | The TRSPI:CLK? query returns the source and threshold                             |
|                  | for the serial clock of SPI trigger.                                              |
|                  |                                                                                   |
| COMMAND SYNTAX   | TRSPI:CLK <source/> [, <threshold>]</threshold>                                   |
|                  | <source/> :={C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7,D8,                              |
|                  | D9,D10,D11,D12,D13,D14,D15}                                                       |
|                  | <pre><threshold>:= value with unit. It is necessary to set when</threshold></pre> |
|                  | the source is analog channel.                                                     |
|                  |                                                                                   |
|                  |                                                                                   |
|                  | •You need add the volt unit (V/mV) to the threshold. If                           |
|                  | there is no unit added, it defaults to be V.                                      |
|                  | • The range of threshold is related to the vertical scale of                      |
|                  | the source.                                                                       |
| QUERY SYNTAX     | TRSPI:CLK?                                                                        |
| RESPONSE FORMAT  | TRSPI:CLK <source/> [, <threshold>]</threshold>                                   |
|                  |                                                                                   |
|                  | <threshold>:= numerical value in E-notation with SI unit.</threshold>             |
| EXAMPLE          | When the serial protocol is SPI, the following command                            |
|                  | sets the source of CLK to channel3 and the threshold to                           |
|                  | 200 mV.                                                                           |
|                  | Command message:                                                                  |
|                  | TRSPI:CLK C3,0.2V                                                                 |
| RELATED COMMANDS | TRSPI:MISO                                                                        |
|                  | TRSPI:MOSI                                                                        |



| SERIAL TRIGGER   | TRSPI:CLK:EDGE<br>Command/Query                                                                                                                  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRSPI:CLK:EDGE command selects the edge of the clock that data latched on.                                                                   |
|                  | The TRSPI:CLK:EDGE? query returns the edge of the clock that data latched on.                                                                    |
| COMMAND SYNTAX   | TRSPI:CLK:EDGE <edge></edge>                                                                                                                     |
|                  | <edge>:= {RISING,FALLING}</edge>                                                                                                                 |
| QUERY SYNTAX     | TRSPI:CLK:EDGE?                                                                                                                                  |
| RESPONSE FORMAT  | TRSPI:CLK:EDGE <edge></edge>                                                                                                                     |
| EXAMPLE          | When the serial protocol is SPI, the following command sets the edge of the clock to rising.<br>Command message:<br><i>TRSPI:CLK:EDGE RISING</i> |
| RELATED COMMANDS | TRSPI:CLK                                                                                                                                        |



| SERIAL TRIGGER   | TRSPI:CLK:TIM<br>Command/Query                                                                                                                                                           |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRSPI:CLK:TIM command sets the timeout value for<br>the clock of SPI trigger when the CS type is set to CLK<br>Timeout.                                                              |
|                  | The TRSPI:CLK:TIM? query returns the timeout value for<br>the clock of SPI trigger when the CS type is set to CLK<br>Timeout.                                                            |
| COMMAND SYNTAX   | TRSPI:CLK:TIM <value></value>                                                                                                                                                            |
|                  | <value>:= value with unit, 100ns to 5ms</value>                                                                                                                                          |
|                  | <b>Note</b> :<br>If there is no unit (s/ms/us/ns) added, it defaults to be S.                                                                                                            |
| QUERY SYNTAX     | TRSPI:CLK:TIM?                                                                                                                                                                           |
| RESPONSE FORMAT  | TRSPI:CLK:TIM <value></value>                                                                                                                                                            |
|                  | <threshold>:= numerical value in E-notation with SI unit.</threshold>                                                                                                                    |
| EXAMPLE          | When the serial protocol is SPI and the CS type is CLK<br>Timeout, the following command sets the timeout value for<br>the clock to 2us.<br>Command message:<br><i>TRSPI:CLK:TIM 2us</i> |
| RELATED COMMANDS | TRSPI:CSTP                                                                                                                                                                               |



| SERIAL TRIGGER   | TRSPI:MOSI<br>Command/Query                                                                                                                                                                                            |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRSPI:MOSI command sets the source and threshold for MOSI of SPI trigger.                                                                                                                                          |
|                  | The TRSPI:MOSI? query returns the source and threshold for MOSI of SPI trigger.                                                                                                                                        |
| COMMAND SYNTAX   | TRSPI:MOSI <source/> [, <threshold>]</threshold>                                                                                                                                                                       |
|                  | <source/> :={C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7,D8,<br>D9,D10,D11,D12,D13,D14,D15}<br><threshold>:= value with unit. It is necessary to set when<br/>the source is analog channel.</threshold>                        |
|                  | <ul> <li>Note:</li> <li>You need add the volt unit (V/mV) to the threshold. If there is no unit added, it defaults to be V.</li> <li>The range of threshold is related to the vertical scale of the source.</li> </ul> |
| QUERY SYNTAX     | TRSPI:MOSI?                                                                                                                                                                                                            |
| RESPONSE FORMAT  | TRSPI:MOSI <source/> [, <threshold>]</threshold>                                                                                                                                                                       |
|                  | <threshold>:= numerical value in E-notation with SI unit.</threshold>                                                                                                                                                  |
| EXAMPLE          | When the serial protocol is SPI, the following command sets the source of MOSI to channel3 and the threshold to 200 mV.<br>Command message:<br><i>TRSPI:MOSI_C3,0.2V</i>                                               |
| RELATED COMMANDS | TRSPI:MISO                                                                                                                                                                                                             |



| SERIAL TRIGGER   | TRSPI:MISO<br>Command/Query                                                                                                                                                                     |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRSPI:MISO command sets the source and threshold for MISO of SPI trigger.                                                                                                                   |
|                  | The TRSPI:MISO? query returns the source and threshold for MISO of SPI trigger.                                                                                                                 |
| COMMAND SYNTAX   | TRSPI:MISO <source/> [, <threshold>]</threshold>                                                                                                                                                |
|                  | <source/> :={C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7,D8,<br>D9,D10,D11,D12,D13,D14,D15}<br><threshold>:= value with unit. It is necessary to set when<br/>the source is analog channel.</threshold> |
|                  | Note:<br>•You need add the volt unit (V/mV) to the threshold. If<br>there is no unit added, it defaults to be V.<br>•The range of threshold is related to the vertical scale of<br>the source.  |
| QUERY SYNTAX     | TRSPI:MISO?                                                                                                                                                                                     |
| RESPONSE FORMAT  | TRSPI:MISO <source/> [, <threshold>]</threshold>                                                                                                                                                |
|                  | <threshold>:= numerical value in E-notation with SI unit.</threshold>                                                                                                                           |
| EXAMPLE          | When the serial protocol is SPI, the following command sets the source of MISO to channel3 and the threshold to 200 mV.<br>Command message:<br><i>TRSPI:MISO_C3,0.2V</i>                        |
| RELATED COMMANDS | TRSPI:MOSI                                                                                                                                                                                      |



| SERIAL TRIGGER   | TRSPI:CSTP<br>Command /Query                                                                                               |
|------------------|----------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRSPI:CSTP command sets the serial chip selection type of SPI trigger.                                                 |
|                  | The TRSPI:CSTP? query returns the serial chip selection type of SPI trigger.                                               |
| COMMAND SYNTAX   | TRSPI:CSTP <type></type>                                                                                                   |
|                  | <type>:= {CS,NCS,TIMEOUT}</type>                                                                                           |
| QUERY SYNTAX     | TRSPI:CSTP?                                                                                                                |
| RESPONSE FORMAT  | TRSPI:CSTP <type></type>                                                                                                   |
| EXAMPLE          | When the serial protocol is SPI, the following command sets the CS type to CS.<br>Command message:<br><i>TRSPI:CSTP_CS</i> |
| RELATED COMMANDS | TRSPI:CS<br>TRSPI:NCS<br>TRSPI:CLK:TIM                                                                                     |



| SERIAL TRIGGER   | TRSPI:CS<br>Command/Query                                                                                                                                                                       |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRSPI:CS command sets the source and threshold for CS signal of SPI trigger when the CS type is CS.                                                                                         |
|                  | The TRSPI:CS? query returns the source and threshold for CS signal of SPI trigger when the CS type is CS.                                                                                       |
| COMMAND SYNTAX   | TRSPI:CS <source/> [, <threshold>]</threshold>                                                                                                                                                  |
|                  | <source/> :={C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7,D8,<br>D9,D10,D11,D12,D13,D14,D15}<br><threshold>:= value with unit. It is necessary to set when<br/>the source is analog channel.</threshold> |
|                  | Note:<br>•You need add the volt unit (V/mV) to the threshold. If<br>there is no unit added, it defaults to be V.<br>•The range of threshold is related to the vertical scale of<br>the source.  |
| QUERY SYNTAX     | TRSPI:CS?                                                                                                                                                                                       |
| RESPONSE FORMAT  | TRSPI:CS <source/> [, <threshold>]</threshold>                                                                                                                                                  |
|                  | <threshold>:= numerical value in E-notation with SI unit.</threshold>                                                                                                                           |
| EXAMPLE          | When the serial protocol is SPI and the CS type is CS, the following command sets the source of CS to channel3 and the threshold to 200 mV.<br>Command message:<br><i>TRSPI:CS C3,0.2V</i>      |
| RELATED COMMANDS | TRSPI:CSTP                                                                                                                                                                                      |



| SERIAL TRIGGER   | TRSPI:NCS<br>Command/Query                                                        |
|------------------|-----------------------------------------------------------------------------------|
| DESCRIPTION      | The TRSPI:NCS command sets the source and threshold                               |
|                  | for ~CS signal of SPI trigger when the CS type is ~CS.                            |
|                  | The TRSPI:NCS? query returns the source and threshold                             |
|                  | for ~CS signal of SPI trigger when the CS type is ~CS.                            |
| COMMAND SYNTAX   | TRSPI:NCS <source/> [, <threshold>]</threshold>                                   |
|                  | <source/> :={C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7,D8,                              |
|                  | D9,D10,D11,D12,D13,D14,D15}                                                       |
|                  | <pre><threshold>:= value with unit. It is necessary to set when</threshold></pre> |
|                  | the source is analog channel.                                                     |
|                  | Note:                                                                             |
|                  | •You need add the volt unit (V/mV) to the threshold. If                           |
|                  | there is no unit added, it defaults to be V.                                      |
|                  | •The range of threshold is related to the vertical scale of                       |
|                  | the source.                                                                       |
| QUERY SYNTAX     | TRSPI:NCS?                                                                        |
| RESPONSE FORMAT  | TRSPI:NCS <source/> [, <threshold>]</threshold>                                   |
|                  | <threshold>:= numerical value in E-notation with SI unit.</threshold>             |
| EXAMPLE          | When the serial protocol is SPI and the CS type is ~CS,                           |
|                  | the following command sets the source of ~CS to                                   |
|                  | channel3 and the threshold to 200 mV.                                             |
|                  | Command message:                                                                  |
|                  | TRSPI:NCS C3,0.2V                                                                 |
| RELATED COMMANDS | TRSPI:CSTP                                                                        |



| SERIAL TRIGGER  | TRSPI:TRTY<br>Command/Query                                                                                                           |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRSPI:TRTY command sets the trigger source for SPI trigger.                                                                       |
|                 | The TRSPI:TRTY? query returns the trigger source for SPI trigger.                                                                     |
| COMMAND SYNTAX  | TRSPI:TRTY <source/>                                                                                                                  |
|                 | <source/> := {MOSI,MISO}                                                                                                              |
| QUERY SYNTAX    | TRSPI:TRTY?                                                                                                                           |
| RESPONSE FORMAT | TRSPI:TRTY <source/>                                                                                                                  |
| EXAMPLE         | When the serial protocol is SPI, the following command sets the trigger source to MOSI.<br>Command message:<br><i>TRSPI:TRTY MOSI</i> |



| SERIAL TRIGGER   | TRSPI:DATA<br>Command                                                                                                                                       |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRSPI:DATA command sets the data value of every bit used for SPI trigger.                                                                               |
| COMMAND SYNTAX   | TRSPI:DATA <value1>[,<value2>[,[,<value>]]]</value></value2></value1>                                                                                       |
|                  | <value>:= {0,1,X}</value>                                                                                                                                   |
| EXAMPLE          | •When the serial protocol is SPI and the data length is 4, the following command sets data value to 1011.<br>Command message:<br><i>TRSPI:DATA 1,0,1,1</i>  |
|                  | •When the serial protocol is SPI and the data length is 4,<br>the following command ignore the data value.<br>Command message:<br><i>TRSPI:DATA X,X,X,X</i> |
| RELATED COMMANDS | TRSPI:DLEN                                                                                                                                                  |



| SERIAL TRIGGER   | TRSPI:DLEN<br>Command/Query                                                                                                          |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRSPI:DLEN command sets the length of data for SPI trigger.                                                                      |
|                  | The TRSPI:DLEN? query returns the length of data for SPI trigger.                                                                    |
| COMMAND SYNTAX   | TRSPI:DLEN <value></value>                                                                                                           |
|                  | <value>:= 4 to 96</value>                                                                                                            |
| QUERY SYNTAX     | TRSPI:DLEN?                                                                                                                          |
| RESPONSE FORMAT  | TRSPI:DLEN <value></value>                                                                                                           |
| EXAMPLE          | When the serial protocol is SPI, the following command sets the trigger data length to 8.<br>Command message:<br><i>TRSPI:DLEN 8</i> |
| RELATED COMMANDS | TRSPI:DATA                                                                                                                           |



| SERIAL TRIGGER  | TRSPI:BIT<br>Command/Query                                                                                                    |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRSPI:BIT command sets the bit order for SPI trigger.                                                                     |
|                 | The TRSPI:BIT? query returns the bit order for SPI trigger.                                                                   |
| COMMAND SYNTAX  | TRSPI:BIT <order></order>                                                                                                     |
|                 | <order>:= {MSB,LSB}</order>                                                                                                   |
| QUERY SYNTAX    | TRSPI:BIT?                                                                                                                    |
| RESPONSE FORMAT | TRSPI:BIT <order></order>                                                                                                     |
| EXAMPLE         | When the serial protocol is SPI, the following command sets the bit order to MSB.<br>Command message:<br><i>TRSPI:BIT_MSB</i> |



| SERIAL TRIGGER   | TRUART:RX<br>Command/Query                                                                                                                                                                                             |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRUART:RX command sets the source and threshold for RX of UART trigger.                                                                                                                                            |
|                  | The TRUART:RX? query returns the source and threshold for RX of UART trigger.                                                                                                                                          |
| COMMAND SYNTAX   | TRUART:RX <source/> [, <threshold>]</threshold>                                                                                                                                                                        |
|                  | <source/> :={C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7,D8,<br>D9,D10,D11,D12,D13,D14,D15}<br><threshold>:= value with unit. It is necessary to set when<br/>the source is analog channel.</threshold>                        |
|                  | <ul> <li>Note:</li> <li>You need add the volt unit (V/mV) to the threshold. If there is no unit added, it defaults to be V.</li> <li>The range of threshold is related to the vertical scale of the source.</li> </ul> |
| QUERY SYNTAX     | TRUART:RX?                                                                                                                                                                                                             |
| RESPONSE FORMAT  | TRUART:RX <source/> [, <threshold>]</threshold>                                                                                                                                                                        |
|                  | <threshold>:= numerical value in E-notation with SI unit.</threshold>                                                                                                                                                  |
| EXAMPLE          | When the serial protocol is UART, the following command<br>sets the source of RX to channel3 and the threshold to<br>200 mV.<br>Command message:<br><i>TRUART:RX C3,0.2V</i>                                           |
| RELATED COMMANDS | TRUART:TX                                                                                                                                                                                                              |



| SERIAL TRIGGER   | TRUART:TX<br>Command/Query                                                                                                                                                                      |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRUART:TX command sets the source and threshold for TX of UART trigger.                                                                                                                     |
|                  | The TRUART:TX? query returns the source and threshold for TX of UART trigger.                                                                                                                   |
| COMMAND SYNTAX   | TRIG_UART:TX <source/> [, <threshold>]</threshold>                                                                                                                                              |
|                  | <source/> :={C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7,D8,<br>D9,D10,D11,D12,D13,D14,D15}<br><threshold>:= value with unit. It is necessary to set when<br/>the source is analog channel.</threshold> |
|                  | Note:<br>•You need add the volt unit (V/mV) to the threshold. If<br>there is no unit added, it defaults to be V.<br>•The range of threshold is related to the vertical scale of<br>the source.  |
| QUERY SYNTAX     | TRUART:TX?                                                                                                                                                                                      |
| RESPONSE FORMAT  | TRUART:TX <source/> [, <threshold>]</threshold>                                                                                                                                                 |
|                  | <threshold>:= numerical value in E-notation with SI unit.</threshold>                                                                                                                           |
| EXAMPLE          | When the serial protocol is UART, the following command<br>sets the source of TX to channel3 and the threshold to 200<br>mV.<br>Command message:<br><i>TRUART:TX C3,0.2V</i>                    |
| RELATED COMMANDS | TRUART:RX                                                                                                                                                                                       |



| SERIAL TRIGGER   | TRUART:TRTY<br>Command/Query                                                                                                        |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRUART:TRTY command sets the trigger source for UART trigger.                                                                   |
|                  | The TRUART:TRTY? query returns the trigger source for UART trigger.                                                                 |
| COMMAND SYNTAX   | TRUART:TRTY <source/>                                                                                                               |
|                  | <source/> := {RX,TX}                                                                                                                |
| QUERY SYNTAX     | TRUART:TRTY?                                                                                                                        |
| RESPONSE FORMAT  | TRUART:TRTY <source/>                                                                                                               |
| EXAMPLE          | When the serial protocol is UART, the following command sets the trigger source to TX.<br>Command message:<br><i>TRUART:TRTY_TX</i> |
| RELATED COMMANDS | TRUART:RX<br>TRUART:TX<br>TRSPI:DLEN                                                                                                |



| SERIAL TRIGGER  | TRUART:CON<br>Command/Query                                          |
|-----------------|----------------------------------------------------------------------|
| DESCRIPTION     | The TRUART:CON command sets the trigger condition of UART trigger.   |
|                 | The TRUART:CON? query returns the trigger condition of UART trigger. |
| COMMAND SYNTAX  | TRUART:CON <condition></condition>                                   |
|                 | <condition>:= {START,STOP,DATA,ERROR}</condition>                    |
|                 | <ul> <li>START— Start condition.</li> </ul>                          |
|                 | <ul> <li>STOP— Stop condition.</li> </ul>                            |
|                 | <ul> <li>DATA— Specify a search based on data.</li> </ul>            |
|                 | <ul> <li>ERROR— Error condition.</li> </ul>                          |
| QUERY SYNTAX    | TRUART:CON?                                                          |
| RESPONSE FORMAT | TRUART:CON <condition></condition>                                   |
| EXAMPLE         | When the serial protocol is UART, the following command              |
|                 | sets the trigger condition to START.                                 |
|                 | Command message:                                                     |
|                 | TRUART:CON START                                                     |



| SERIAL TRIGGER   | TRUART:QUAL<br>Command/Query                                                                                                                                                                                   |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRUART:QUAL command sets the UART data qualifier when the trigger condition is set to DATA.                                                                                                                |
|                  | The TRUART:QUAL? query returns the UART data qualifier when the trigger condition is set to DATA.                                                                                                              |
| COMMAND SYNTAX   | TRUART:QUAL <condition></condition>                                                                                                                                                                            |
|                  | <condition>:= {EQUAL,MORE,LESS }<br/>•EQUAL— sets the UART data qualifier to equal.<br/>•MORE— sets the UART data qualifier to greater than.<br/>•LESS— sets the UART data qualifier to less than.</condition> |
| QUERY SYNTAX     | TRUART:QUAL?                                                                                                                                                                                                   |
| RESPONSE FORMAT  | TRUART:QUAL <condition></condition>                                                                                                                                                                            |
| EXAMPLE          | When the serial protocol is UART and the trigger condition<br>is DATA, the following command sets the data qualifier to<br>EQUAL.<br>Command message:<br><i>TRUART:QUAL EQUAL</i>                              |
| RELATED COMMANDS | TRUART:CON                                                                                                                                                                                                     |



| SERIAL TRIGGER   | TRUART:DATA<br>Command/Query                                                                                                                                                                 |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRUART:DATA command sets the data value used for UART trigger when the trigger condition is set to DATA.                                                                                 |
|                  | The TRUART:DATA? query returns the data1 value used for UART trigger when the trigger condition is set to DATA.                                                                              |
| COMMAND SYNTAX   | TRUART:DATA <value></value>                                                                                                                                                                  |
|                  | <value>:= 0 to 256<br/>Note:<br/>Use the don't care data (256) to ignore the data value.</value>                                                                                             |
| QUERY SYNTAX     | TRUART:DATA?                                                                                                                                                                                 |
| RESPONSE FORMAT  | TRUART:DATA <value></value>                                                                                                                                                                  |
| EXAMPLE          | <ul> <li>When the serial protocol is UART and the trigger condition is DATA, the following command sets the data value to 0x29.</li> <li>Command message:</li> <li>TRUART:DATA 41</li> </ul> |
|                  | <ul> <li>When the serial protocol is UART and the trigger condition is DATA the following command ignore the data value.</li> <li>Command message:</li> <li>TRUART:DATA 256</li> </ul>       |
| RELATED COMMANDS | TRUART:CON                                                                                                                                                                                   |



| SERIAL TRIGGER  | TRUART:BAUD<br>Command/Query                                                                                                                                                   |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRUART:BAUD command sets the baud rate value used for UART trigger.                                                                                                        |
|                 | The TRUART:BAUD? query returns the baud rate value used for UART trigger.                                                                                                      |
| COMMAND SYNTAX  | TRUART:BAUD <value1>[,<value2>]</value2></value1>                                                                                                                              |
|                 | <value1>:={600,1200,2400,4800,9600,19200,38400,5760<br/>0,115200,CUSTOM}<br/><value2>:= 300 to 5000000 When the value1 is CUSTOM.</value2></value1>                            |
| QUERY SYNTAX    | TRUART:BAUD?                                                                                                                                                                   |
| RESPONSE FORMAT | TRUART:BAUD <value>[,<value2>]</value2></value>                                                                                                                                |
| EXAMPLE         | •When the serial protocol is UART the following command<br>sets the baud rate value to 9600 bit/s.<br>Command message:<br><i>TRUART:BAUD 9600</i>                              |
|                 | <ul> <li>When the serial protocol is UART the following command sets the baud rate value to 2000 bit/s.</li> <li>Command message:</li> <li>TRUART: BAUD_CUSTOM.2000</li> </ul> |



| SERIAL TRIGGER  | TRUART:DLEN<br>Command/Query                                                                                                     |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRUART:DLEN command sets the data length value used for UART trigger.                                                        |
|                 | The TRUART:DLEN? query returns the data length value used for UART trigger.                                                      |
| COMMAND SYNTAX  | TRUART:DLEN <value></value>                                                                                                      |
|                 | <value>:= 5 to 8</value>                                                                                                         |
| QUERY SYNTAX    | TRUART:DLEN?                                                                                                                     |
| RESPONSE FORMAT | TRUART:DLEN <value></value>                                                                                                      |
| EXAMPLE         | When the serial protocol is UART, the following command sets data length value to 6.<br>Command message:<br><i>TRUART:DLEN 6</i> |



| SERIAL TRIGGER  | TRUART:PAR<br>Command/Query                                                                                                    |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRUART:PAR command sets the parity check used for UART trigger.                                                            |
|                 | The TRUART:PAR? query returns the parity check used for UART trigger.                                                          |
| COMMAND SYNTAX  | TRUART:PAR <value></value>                                                                                                     |
|                 | <value>:= {NONE,ODD,EVEN}</value>                                                                                              |
| QUERY SYNTAX    | TRUART:PAR?                                                                                                                    |
| RESPONSE FORMAT | TRUART:PAR <value></value>                                                                                                     |
| EXAMPLE         | When the serial protocol is UART, the following command sets parity check to odd.<br>Command message:<br><i>TRUART:PAR ODD</i> |



| SERIAL TRIGGER  | TRUART:POL<br>Command/Query                                                                                                  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRUART:POL command sets the idle level used for UART trigger.                                                            |
|                 | The TRUART:POL? query returns the idle level used for UART trigger.                                                          |
| COMMAND SYNTAX  | TRUART:POL <value></value>                                                                                                   |
|                 | <value>:= {LOW,HIGH}</value>                                                                                                 |
| QUERY SYNTAX    | TRUART:POL?                                                                                                                  |
| RESPONSE FORMAT | TRUART:POL <value></value>                                                                                                   |
| EXAMPLE         | When the serial protocol is UART, the following command sets idle level to low.<br>Command message:<br><i>TRUART:POL LOW</i> |



| SERIAL TRIGGER  | TRUART:STOP<br>Command/Query                                                                                                          |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRUART:STOP command sets the length of stop bit for UART trigger.                                                                 |
|                 | The TRUART:STOP? query returns the length of stop bit for UART trigger.                                                               |
| COMMAND SYNTAX  | TRUART:STOP <value></value>                                                                                                           |
|                 | <value>:= {1,1.5,2}</value>                                                                                                           |
| QUERY SYNTAX    | TRUART:STOP?                                                                                                                          |
| RESPONSE FORMAT | TRUART:STOP <value></value>                                                                                                           |
| EXAMPLE         | When the serial protocol is UART, the following command sets the length of stop bit to 1.<br>Command message:<br><i>TRUART:STOP 1</i> |



| SERIAL TRIGGER  | TRUART:BIT<br>Command/Query                                                                                                     |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRUART:BIT command sets the bit order for UART trigger.                                                                     |
|                 | The TRUART:BIT? query returns the bit order for UART trigger.                                                                   |
| COMMAND SYNTAX  | TRIG_UART:BIT <value></value>                                                                                                   |
|                 | <value>:= {LSB,MSB}</value>                                                                                                     |
| QUERY SYNTAX    | TRUART:BIT?                                                                                                                     |
| RESPONSE FORMAT | TRUART:BIT <value></value>                                                                                                      |
| EXAMPLE         | When the serial protocol is UART, the following command sets the bit order to MSB.<br>Command message:<br><i>TRUART:BIT MSB</i> |



| SERIAL TRIGGER  | TRCAN:CANH<br>Command/Query                                                                                                                                                                                            |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRCAN:CANH command sets the source and threshold for source of CAN trigger.                                                                                                                                        |
|                 | The TRCAN:CANH? query returns the source and threshold CANH of CAN trigger.                                                                                                                                            |
| COMMAND SYNTAX  | TRCAN:CANH <source/> [, <threshold>]</threshold>                                                                                                                                                                       |
|                 | <source/> :={C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7,D8,<br>D9,D10,D11,D12,D13,D14,D15}<br><threshold>:= value with unit. It is necessary to set when<br/>the source is analog channel.</threshold>                        |
|                 | <ul> <li>Note:</li> <li>You need add the volt unit (V/mV) to the threshold. If there is no unit added, it defaults to be V.</li> <li>The range of threshold is related to the vertical scale of the source.</li> </ul> |
| QUERY SYNTAX    | TRCAN:CANH?                                                                                                                                                                                                            |
| RESPONSE FORMAT | TRCAN:CANH <source/> [, <threshold>]</threshold>                                                                                                                                                                       |
| EXAMPLE         | When the serial protocol is CAN, the following command sets the source to channel3 and the threshold to 200 mV. Command message: <i>TRCAN:CANH C3,0.2V</i>                                                             |



| SERIAL TRIGGER   | TRCAN:CON<br>Command/Query                                                                                                                                                                                                                 |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRCAN:CON command sets the trigger condition of CAN trigger.                                                                                                                                                                           |
|                  | The TRCAN:CON? query returns the trigger condition of CAN trigger.                                                                                                                                                                         |
| COMMAND SYNTAX   | TRCAN:CON <condition></condition>                                                                                                                                                                                                          |
|                  | <condition>:=<br/>{START,REMOTE,ID,ID_AND_DATA,ERROR}</condition>                                                                                                                                                                          |
|                  | <ul> <li>START – Start condition.</li> <li>REMOTE – Remote frame</li> <li>ID – Specifies a search based on ID bits and ID.</li> <li>ID_AND_DATA – Specify a search based on ID bits, ID and data.</li> <li>ERROR – Error frame.</li> </ul> |
| QUERY SYNTAX     | TRCAN:CON?                                                                                                                                                                                                                                 |
| RESPONSE FORMAT  | TRCAN:CON <condition></condition>                                                                                                                                                                                                          |
| EXAMPLE          | When the serial protocol is CAN, the following command sets the trigger condition to START.<br>Command message:<br><i>TRCAN:CON START</i>                                                                                                  |
| RELATED COMMANDS | TRCAN:ID<br>TRCAN:DATA                                                                                                                                                                                                                     |

TRCAN:DAT2



SERIAL TRIGGER **TRCAN:ID** Command/Query The TRCAN:ID command sets the ID value for CAN DESCRIPTION trigger when the trigger condition is set to ID or ID AND DATA. The TRCAN: ID? query returns the ID value for CAN trigger when the trigger condition is set to ID or ID\_AND\_DATA. COMMAND SYNTAX TRCAN:ID <value> <value>:= 0 to 2<sup>n</sup> when n is the ID bits (11 or 29) Note: •Use the don't care data (2048) to ignore the address value when trigger condition is ID or ID AND DATA, and the ID length is 11. ■Use the don't care data (536870912) to ignore the address value when trigger condition is ID or ID\_AND\_DATA, and the ID length is 29. TRCAN: ID? QUERY SYNTAX **RESPONSE FORMAT** TRCAN:ID <value> **EXAMPLE** When the serial protocol is CAN and the trigger condition is ID, the following command sets the ID value to 0x29. Command message: TRCAN:ID 41 When the serial protocol is CAN, the trigger condition is ID, and the address length is 11, the following command ignore the ID value.

Command message:



## TRCAN:ID 2048

RELATED COMMANDS

TRCAN:CON TRCAN:IDL



| SERIAL TRIGGER   | TRCAN:IDL<br>Command/Query                                                                                                                                                      |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRCAN:IDL command sets the ID length for CAN trigger when the trigger condition is set to ID or ID_AND_DATA.                                                                |
|                  | The TRCAN:IDL? query returns the ID length for CAN trigger when the trigger condition is set to ID or ID_AND_DATA.                                                              |
| COMMAND SYNTAX   | TRCAN:IDL <value></value>                                                                                                                                                       |
|                  | <value>:= {11BITS,29BITS}</value>                                                                                                                                               |
| QUERY SYNTAX     | TRCAN:IDL?                                                                                                                                                                      |
| RESPONSE FORMAT  | TRCAN:IDL <value></value>                                                                                                                                                       |
| EXAMPLE          | When the serial protocol is CAN and the trigger condition<br>is ID, the following command sets the ID length value to<br>11bits.<br>Command message:<br><i>TRCAN:IDL 11BITS</i> |
| RELATED COMMANDS | TRCAN:CON                                                                                                                                                                       |


| SERIAL TRIGGER   | TRCAN:DATA<br>Command/Query                                                                                                                                                      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRCAN:DATA command sets the data1 value used for CAN trigger when the trigger condition is set to ID_AND_DATA.                                                               |
|                  | The TRCAN:DATA? query returns the data1 value for CAN trigger when the trigger condition is set to ID_AND_DATA.                                                                  |
| COMMAND SYNTAX   | TRCAN:DATA <value></value>                                                                                                                                                       |
|                  | <value>:= 0 to 256<br/><b>Note</b>:<br/>Use the don't care data (256) to ignore the data value.</value>                                                                          |
| QUERY SYNTAX     | TRCAN:DATA?                                                                                                                                                                      |
| RESPONSE FORMAT  | TRCAN:DATA <value></value>                                                                                                                                                       |
| EXAMPLE          | •When the serial protocol is CAN and the trigger condition<br>is ID_AND_DATA, the following command sets the data1<br>value to 0x29.<br>Command message:<br><i>TRCAN:DATA 41</i> |
|                  | •When the serial protocol is CAN and the trigger condition<br>is ID_AND_DATA, the following command ignore the<br>data1 value.<br>Command message:<br><i>TRCAN:DATA 256</i>      |
| RELATED COMMANDS | TRCAN:CON<br>TRCAN:DAT2                                                                                                                                                          |



| SERIAL TRIGGER   | TRCAN:DAT2<br>Command/Query                                                                                                                                                      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRCAN:DAT2 command sets the data2 value used for CAN trigger when the trigger condition is set to ID_AND_DATA.                                                               |
|                  | The TRCAN:DAT2? query returns the data2 value used for CAN trigger when the trigger condition is set to ID_AND_DATA.                                                             |
| COMMAND SYNTAX   | TRCAN:DAT2 <value></value>                                                                                                                                                       |
|                  | <value>:= 0 to 256<br/><b>Note</b>:<br/>Use the don't care data (256) to ignore the data value.</value>                                                                          |
| QUERY SYNTAX     | TRCAN:DAT2?                                                                                                                                                                      |
| RESPONSE FORMAT  | TRCAN:DAT2 <value></value>                                                                                                                                                       |
| EXAMPLE          | •When the serial protocol is CAN and the trigger condition<br>is ID_AND_DATA, the following command sets the data1<br>value to 0x29.<br>Command message:<br><i>TRCAN:DAT2_41</i> |
|                  | •When the serial protocol is CAN and the trigger condition<br>is ID_AND_DATA, the following command ignore the<br>data2 value.<br>Command message:<br><i>TRCAN:DAT2 256</i>      |
| RELATED COMMANDS | TRCAN:CON<br>TRCAN:DATA                                                                                                                                                          |

| SERIAL TRIGGER  | TRCAN:BAUD<br>Command/Query                                                                                                                           |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRCAN:BAUD command sets the baud rate for CAN trigger.                                                                                            |
|                 | The TRCAN:BAUD? query returns the baud rate for CAN trigger.                                                                                          |
| COMMAND SYNTAX  | TRCAN:BAUD <value1>[,<value2>]</value2></value1>                                                                                                      |
|                 | <value1>:={5k,10k,20k,59k,100k,125k,250,500k,800k,1M,<br/>CUSTOM}<br/><value2>:= 5000 to 1000000 When the value1 is<br/>CUSTOM.</value2></value1>     |
| QUERY SYNTAX    | TRCAN:BAUD?                                                                                                                                           |
| RESPONSE FORMAT | TRCAN:BAUD <value1>[,<value2>]</value2></value1>                                                                                                      |
| EXAMPLE         | •When the serial protocol is CAN the following command<br>sets the baud rate to 5 kbit/s.<br>Command message:<br><i>TRCAN:BAUD 5k</i>                 |
|                 | •When the serial protocol is CAN the following command<br>sets the baud rate to 100000 bit/s.<br>Command message:<br><i>TRCAN:BAUD CUSTOM, 100000</i> |



| SERIAL TRIGGER  | TRLIN:SRC<br>Command/Query                                                         |
|-----------------|------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRLIN:SRC command sets the source and threshold for the source of LIN trigger. |
|                 | The TRLIN:SRC? query returns the source and threshold                              |
|                 | for the source of LIN trigger.                                                     |
| COMMAND SYNTAX  | TRLIN:SRC <source/> [, <threshold>]</threshold>                                    |
|                 | <source/> :={C1,C2,C3,C4,D0,D1,D2,D3,D4,D5,D6,D7,D8,                               |
|                 | D9,D10,D11,D12,D13,D14,D15}                                                        |
|                 | <pre><threshold>:= value with unit. It is necessary to set when</threshold></pre>  |
|                 | the source is analog channel.                                                      |
|                 | Note:                                                                              |
|                 | •You need add the volt unit (V/mV) to the value. If there is                       |
|                 | no unit added, it defaults to be V.                                                |
|                 | •The range of value is related to the vertical scale of the                        |
|                 | source.                                                                            |
| QUERY SYNTAX    | TRLIN:SRC?                                                                         |
| RESPONSE FORMAT | TRLIN:SRC <source/> [, <threshold>]</threshold>                                    |
|                 | <threshold>:= numerical value in E-notation with SI unit.</threshold>              |
| EXAMPLE         | When the serial protocol is LIN, the following command                             |
|                 | sets the source to channel3 and the threshold to 200 mV.                           |
|                 | Command message:                                                                   |
|                 | TRLIN:SRC C3,0.2V                                                                  |



| SERIAL TRIGGER   | TRLIN:CON<br>Command/Query                                                               |
|------------------|------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRLIN:CON command sets the trigger condition of LIN trigger.                         |
|                  | The TRLIN:CON? query returns the trigger condition of LIN trigger.                       |
| COMMAND SYNTAX   | TRIG_LIN:CON <condition></condition>                                                     |
|                  | <condition>:= {BREAK,ID,ID_AND_DATA,DATA_ERROR}<br/>•BREAK— Break condition.</condition> |
|                  | <ul> <li>ID— Specify a search based on ID.</li> </ul>                                    |
|                  | ID_AND_DATA—Specify a search based on ID and data.                                       |
|                  | <ul> <li>DATA_ERROR— Error frame.</li> </ul>                                             |
| QUERY SYNTAX     | TRLIN:CON?                                                                               |
| RESPONSE FORMAT  | TRLIN:CON <condition></condition>                                                        |
| EXAMPLE          | When the serial protocol is LIN, the following command                                   |
|                  | sets the trigger condition to break.                                                     |
|                  | Command message:                                                                         |
|                  | TRLIN:CON BREAK                                                                          |
| RELATED COMMANDS | TRLIN:ID                                                                                 |
|                  | TRLIN:DATA                                                                               |
|                  | TRLIN:DAT2                                                                               |



| SERIAL TRIGGER   | TRLIN:ID<br>Command/Query                                                                                                                                          |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRLIN:ID command sets the ID value for LIN trigger when the trigger condition is set to ID or ID_AND_DATA.                                                     |
|                  | The TRLIN:ID? query returns the ID value for LIN trigger when the trigger condition is set to ID or ID_AND_DATA.                                                   |
| COMMAND SYNTAX   | TRLIN:ID <value></value>                                                                                                                                           |
| QUERY SYNTAX     | TRLIN:ID?                                                                                                                                                          |
| RESPONSE FORMAT  | TRLIN:ID <value></value>                                                                                                                                           |
|                  | <value>:= 0 to 64.</value>                                                                                                                                         |
|                  | Note:                                                                                                                                                              |
|                  | Use the don't care data (64) to ignore the ID value.                                                                                                               |
| EXAMPLE          | •When the serial protocol is LIN and the trigger condition<br>is ID, the following command sets the data1 value to 0x29.<br>Command message:<br><i>TRLIN:ID 41</i> |
|                  | •When the serial protocol is LIN and the trigger condition<br>is ID, the following command ignores the ID value.<br>Command message:<br><i>TRLIN:ID 64</i>         |
| RELATED COMMANDS | TRLIN:CON                                                                                                                                                          |



| SERIAL TRIGGER   | TRLIN:DATA<br>Command/Query                                                                                                                                                      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRLIN:DATA command sets the data1 value used for LIN trigger when the trigger condition is set to ID_AND_DATA.                                                               |
|                  | The TRLIN:DATA? query returns the data1 value used for LIN trigger when the trigger condition is set to ID_AND_DATA.                                                             |
| COMMAND SYNTAX   | TRIG_LIN:DATA <value></value>                                                                                                                                                    |
|                  | <value>:= 0 to 256<br/><b>Note</b>:<br/>Use the don't care data (256) to ignore the data value.</value>                                                                          |
| QUERY SYNTAX     | TRLIN:DATA?                                                                                                                                                                      |
| RESPONSE FORMAT  | TRLIN:DATA <value></value>                                                                                                                                                       |
| EXAMPLE          | •When the serial protocol is LIN and the trigger condition<br>is ID_AND_DATA, the following command sets the data1<br>value to 0x29.<br>Command message:<br><i>TRLIN:DATA 41</i> |
|                  | •When the serial protocol is LIN and the trigger condition<br>is ID_AND_DATA, the following command ignores the<br>data1 value.<br>Command message:<br><i>TRLIN:DATA 256</i>     |
| RELATED COMMANDS | TRLIN:CON<br>TRLIN:DAT2                                                                                                                                                          |



| SERIAL TRIGGER   | TRLIN:DAT2<br>Command/Query                                                                                        |
|------------------|--------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The TRLIN:DAT2 command sets the data2 value used for LIN trigger when the trigger condition is set to ID_AND_DATA. |
|                  | The TRLIN:DAT2? query returns the data2 value used for                                                             |
|                  | LIN trigger when the trigger condition is set to                                                                   |
|                  | ID_AND_DATA.                                                                                                       |
| COMMAND SYNTAX   | TRLIN:DAT2 <value></value>                                                                                         |
|                  | <value>:= 0 to 256.</value>                                                                                        |
|                  | Note:                                                                                                              |
|                  | Use the don't care data (256) to ignore the data value.                                                            |
| QUERY SYNTAX     | TRLIN:DAT2?                                                                                                        |
| RESPONSE FORMAT  | TRLIN:DAT2 <value></value>                                                                                         |
| EXAMPLE          | When the serial protocol is LIN and the trigger condition                                                          |
|                  | is ID_AND_DATA, the following command sets the data2                                                               |
|                  | value to 0x29.                                                                                                     |
|                  | Command message:                                                                                                   |
|                  | TRLIN:DAT2 41                                                                                                      |
|                  | When the serial protocol is LIN and the trigger condition                                                          |
|                  | is ID_AND_DATA, the following command ignore the                                                                   |
|                  | data2 value.                                                                                                       |
|                  | Command message:                                                                                                   |
|                  | TRLIN:DAT2 256                                                                                                     |
| RELATED COMMANDS | TRLIN:CON                                                                                                          |
|                  | TRLIN:DATA                                                                                                         |



| SERIAL TRIGGER  | TRLIN:BAUD<br>Command/Query                                                                                                                      |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The TRLIN:BAUD command sets the baud rate for LIN trigger.                                                                                       |
|                 | The TRLIN:BAUD? query returns the baud rate value for LIN trigger.                                                                               |
| COMMAND SYNTAX  | TRLIN:BAUD <value1>[,<value2>]</value2></value1>                                                                                                 |
|                 | <value1>:= {600,1200,2400,4800,9600,19200,CUSTOM}<br/><value2>:= 300 to 20000 When the value1 is CUSTOM.</value2></value1>                       |
| QUERY SYNTAX    | TRCAN:BAUD?                                                                                                                                      |
| RESPONSE FORMAT | TRLIN:BAUD <value1>[,<value2>]</value2></value1>                                                                                                 |
| EXAMPLE         | •When the serial protocol is LIN, the following command<br>sets the baud rate value to 9600 bit/s.<br>Command message:<br><i>TRLIN:BAUD 9600</i> |
|                 | •When the serial protocol is LIN, the following command sets the baud rate value to 500 bit/s. Command message:                                  |
|                 | TRLIN:BAUD CUSTOM,500                                                                                                                            |



# WAVEFORM Commands

The WAVEFORM subsystem is used to transfer data to a controller from the oscilloscope waveform memory.

The waveform record is actually contained in two portions: the preamble and waveform data. The waveform record must be read from the oscilloscope by the controller using two separate commands. The waveform data is the actual data acquired for each point in the specified source. The preamble contains the information for interpreting the waveform data.

- WF?
- WFSU



## WAVEFORM

| DESCRIPTION     | The WAVEFORM? query transfers a waveform from the oscilloscope to the controller.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                 | <ul> <li>Note:</li> <li>The format of the waveform data depends on the current settings specified by the last WFSU command.</li> <li>When using the visa library, you should pay attention to the following settings:</li> <li>Set the I/O buffer size</li> <li>The read buffer size depends on the number of waveform points. When it needs to read in segments, the size of each segment is vary from the models.</li> <li>Set the timeout value</li> <li>The timeout value is related to the network speed or USB transmission speed. Please evaluate by yourself. The initial value is generally 2s.</li> </ul> |  |  |  |  |
| QUERY SYNTAX    | <trace>:WAVEFORM? <section></section></trace>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                 | <trace>:={C1,C2,C3,C4,MATH,D0,D1,D2,D3,D4,D5,D6,D<br/>7,D8,D9,D10,D11,D12,D13,D14,D15}<br/>•C[X] — Analog channel.<br/>•D[X] — Digital channel. Only valid for SDS1000X-E and<br/>SDS2000X-E series.<br/>•MATH — Valid except for the FFT waveform and only<br/>valid for SDS1000X-E series.</trace>                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                 | <pre><section>:={DAT2} •DAT2 — Return the main data include the head, the wave data and the ending flag. The length of data is current memory depth.</section></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| RESPONSE FORMAT | <trace>:WAVEFORM <data block=""></data></trace>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |



**RELATED COMMANDS** 

WFSU

EXAMPLE

For SDS1000X-E series, the following steps show how to use the command to reconstitute the display of waveform.

For analog channel waveform:



Step 1: Send the query to get the data of waveform.

Query message:

## C1:WF? DAT2

Data

Response message:

The head of message: C1:WF DAT2. These are followed by the string #9000000070, the beginning of a binary block in which nine ASCII integers are used to give the length of the block (70 bytes). After the length of block, is beginning of the wave data. "OA OA" means the end of data.

264

| Da | L CL |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |
|----|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|--|
| 43 | 31   | 3A | 57 | 46 | 20 | 44 | 41 | 54 | 32 | 2C | 23 | 39 | 30 | 30 | 30 |  |
| 30 | 30   | 30 | 30 | 37 | 30 | 02 | 03 | 04 | 05 | 05 | 04 | 04 | 02 | 01 | FF |  |
| FD | FB   | F7 | F5 | F2 | EF | EC | E8 | E5 | E1 | DE | DB | D9 | D6 | D4 | D2 |  |
| DO | DO   | DO | CF | DO | DO | D2 | D3 | D5 | D7 | D9 | DC | EO | E3 | E6 | E9 |  |
| EC | FO   | F3 | F6 | F8 | FB | FE | 00 | 02 | 03 | 04 | 05 | 05 | 03 | 03 | 02 |  |
| 01 | FF   | FD | FB | F8 | F5 | F2 | EE | EB | E7 | E4 | EO | 0A | 0A |    |    |  |

| Desc | cript | ion |
|------|-------|-----|
|      |       |     |

ъ

| C | 1 | : | W<br>In | F<br>7 | 'n | D | A | T | 2 | , | # | 9 | 0 | 0 | 0 |
|---|---|---|---------|--------|----|---|---|---|---|---|---|---|---|---|---|
| ~ | ~ | ~ | ~       |        | Č  |   | • | • | • | • | • | • | • | • | - |
| • | • | • | •       | •      | •  | • | • | • | • | • | • | • | • | • | - |
| - | • | - | -       | -      | -  | - | - | - | - | • | - | - | - | - | - |
| - |   | - |         |        |    |   | - | - |   | - |   |   |   | - | - |
|   | _ | _ | _       | _      | _  | _ | _ | _ | _ | _ | _ | ١ | n | ١ | n |



Step 2: Calculate the voltage value corresponding to the data point.
Using the formula: voltage value (V) = code value \*(vdiv /25) - voffset.
code value: The decimal of wave data.
(Note: If the decimal is greater than "127", it should minus 256. Then the value is code value. Such as the wave data is "FC" convert to decimal is "252". So the code value is 252-256 = -4.)
vdiv: The Volts/div value.
voffset: The voltage position value.

The picture above as an example: Send command *C1:VDIV?* Return *C1:VDIV 5.00E-01V*. Get the current Volts/div values: vdiv = 0.5V.

Send command *C1:OFST?* Return *C1:OFST -5.00E-01V*. Get the current voltage position values: voffset = -0.5V.

According to the wave data, we can know the first point of waveform is the 23th data "02", convert to decimal is "2" (Hexadecimal converted to decimal).

The first point of wave data voltage value =  $2^{(0.5/25)}$ -(-0.5) = 0.54V.

**Step 3:** Calculate the time value of the data point. Using the formula: time value(S) = -(timebase\*grid/2). timebase: The timebase value. grid: The grid numbers in horizontal direction.

The picture above as an example: Send command *TDIV*? Return *TDIV 5.00E-09S*. Get the current timebase: timebase = 5.00E-09S.

Send command *SARA?* Return *SARA 1.00E+09Sa/s*.

Get the current sampling rate: sampling rate= 1.00GSa/s.



The time interval: time inter = 1/ sampling rate = 1ns.

The time value of the first data point: time value = -(5.00E-09\*14/2) = -35.00E-09(s) = -35(ns). The time value of the second data point: value = -35ns+1ns = -34ns.

The following are two ways of waveform reconstruction:



## Use Excel to reconstruct the waveform:

• Use python to reconstruct the waveform: (See the code in Read Waveform Data (WF) Example) Note: If you want the command return the "numerical" data type only (i.e. return as "*1.00E+09*" when send the command "*SARA?*"), send the command "*CHDR OFF*" at the first. See CHDR for details.





## For digital channel waveform:



Step 1: Send the query to get the data of waveform.



### Query message:

## DO:WF? DAT2

#### Response message:

The head of message: *D0:WF DAT2*. These are followed by the string *#900000700*, the beginning of a binary block in which nine ASCII integers are used to give the length of the data (700 points). For digital, one bit represents a data point, so there are 88 bytes. After the length of block, is beginning of the wave data. "0A 0A" means the end of data.

Step 2: Covert to the high (1) and low (0) corresponding to the data point.

According to the wave data, we can know the first eight points of waveform is the 22th byte "00", convert to binary is "00000000" (Hexadecimal converted to binary (LSB)).

**Step 3:** Calculate the time value of the data point. Using the formula: time value(S) = - (timebase\*grid/2). timebase: The timebase value. grid: The grid numbers in horizontal direction.

The picture above as an example: Send command *TDIV*? Return *TDIV 5.00E-08S*. Get the current timebase: timebase = 5.00E-08s.

Send command *DI:SARA?* 

Return DI:SARA 1.00E+09Sa/s.

Get the current sampling rate: sampling rate= 1GSa/s. The time interval: time inter = 1/ sampling rate = 1ns.

The time value of the first data point: time value = -(5.00E-08\*14/2) = -3.50E-07(s) = -350(ns). The time value of the second data point: value = -350ns+1ns = -349ns.





## Use python to reconstruct the waveform: (See the code in Read Waveform Data of Digital Example)



## For math (except for FFT) waveform:

pl.show()

if \_\_name\_\_=='\_\_main\_\_':
 main()



Step 1: Send the query to get the data of waveform.

Query message:

## MATH:WF? DAT2

Response message:

The head of message: *MATH:WF DAT2*. These are followed by the string *#9000001400*, the beginning of a binary block in which nine ASCII integers are used to give the length of the block (1400 bytes). The point number is 1400 with interpolation. After the length of block, is beginning of the wave data. "0A 0A" means the end of data.

Step 2: Calculate the voltage value corresponding to the data point.

Using the formula: voltage value (V) = code value \*(vdiv /25) - voffset

code value: The decimal of wave data.

(**Note:** If the decimal is greater than "127", it should minus 256. Then the value is code value. Such as the wave data is "FC" convert to decimal is "252". So the code value is 252-256 = -4.)

vdiv: The Volts/div value of math.

voffset: The voltage position value.

The picture above as an example: Send command *MTVD*? Return *MTVD 5.00E+00V*. Get the current Volts/div value: vdiv = 5V.

Send command *MTVP?* Return *MTVP 100*. Get the current position value: voffset = mtvp/50\*vdiv=100/50\*5=10V.

According to the wave data, we can know the first point of waveform is the 25th data "17", convert to decimal is "23" (Hexadecimal converted to decimal).

The first point of wave data voltage value = 23\*(5/25)-10 = -5.4V.



**Step 3:** Calculate the time value of the data point. Using the formula: time value(S) = - (timebase\*grid/2). timebase: The timebase value. grid: The grid numbers in horizontal direction.

The picture above as an example:

Send command *TDIV*? Return *TDIV 2.00E-08S*. Get the current timebase: timebase = 20E-09s.

Send command SARA?

Return SARA 1.00E+09Sa/s.

Get the current sampling rate: sampling rate= 1GSa/s.

Send command SANU? C1

Return SANU 2.80E+02pts.

Get the number of sampling points: point number = 280pts.

The interpolation multiplier: interpolation multiplier = length of the block/points number = 1400/280 = 5 The time interval: time inter = 1/sampling rate/interpolation multiplier = 0.2ns.

The time value of the first data point: time value = -(2.00E-08\*14/2) = -1.40E-07(s) = -140(ns). The time value of the second data point: value = -140ns+0.2ns = -139.8ns.

Use python to reconstruct the waveform:









| WAVEFORM       | WAVEFORM_SETUP  WFSU<br>Command/Query                                                                  |
|----------------|--------------------------------------------------------------------------------------------------------|
| DESCRIPTION    | The WAVEFORM_SETUP command specifies the amount                                                        |
|                | of data in a waveform to be transmitted to the controller.                                             |
|                | The WAVEFORM_SETUP? query returns the transfer                                                         |
|                | parameters currently in use.                                                                           |
| COMMAND SYNTAX | WAVEFORM_SETUP                                                                                         |
|                | SP, <sparsing>,NP,<number>,FP,<point></point></number></sparsing>                                      |
|                | SP — Sparse point. It defines the interval between data points.                                        |
|                | For example:                                                                                           |
|                | SP = 0 sends all data points.                                                                          |
|                | SP = 1 sends all data points.                                                                          |
|                | SP = 4 sends every 4th data point                                                                      |
|                | <ul> <li>NP — Number of points. It indicates how many points<br/>should be transmitted.</li> </ul>     |
|                | For example:                                                                                           |
|                | NP = 0 sends all data points.                                                                          |
|                | NP = 50 sends a maximum of 50 data points.                                                             |
|                | <ul> <li>FP — First point. It specifies the address of the first data<br/>point to be sent.</li> </ul> |
|                | For example:                                                                                           |
|                | FP = 0 corresponds to the first data point.                                                            |
|                | FP = 1 corresponds to the second data point.                                                           |
|                | Note:                                                                                                  |
|                | •You can set the sparse point or number of points or the                                               |
|                | first point using key-value pairs alone. See the example for details.                                  |

After power on, SP is set to 0, NP is set to 0, and FP is



set to 0.

| QUERY SYNTAX    | WAVEFORM_SETUP?                                                                                                                                  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| RESPONSE FORMAT | WAVEFORM_SETUP<br>SP, <sparsing>,NP,<number>,FP,<point></point></number></sparsing>                                                              |
| EXAMPLE         | The following command specifies that every 3th data point (SP=3) starting at the 200 <sup>th</sup> point should be transferred. Command message: |
|                 | WFSU SP,3,FP,200                                                                                                                                 |

RELATED COMMANDS

WF?



# WGEN Commands for SDS1000X/SDS2000X

When the built-in waveform generator is licensed (Option AWG), you can use it to output sine, square, ramp, pulse, DC, noise, exponential rise, exponential fall, cardiac, Gaussian pulse and arbitrary waveforms. The WGEN commands are used to select the waveform function and parameters.

- ARWV
- PROD?
- STL?
- WGEN
- WVPR?

Note:

These commands are only valid for SDS1000X and SDS20000X installed AWG option.



| WGEN           | ARBWAVE   ARWV<br>Command                                                                                               |
|----------------|-------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION    | The ARBWAVE command sets the basic waveform type.                                                                       |
| COMMAND SYNTAX | ARBWAVE INDEX, <index></index>                                                                                          |
|                | <index>:= {0,1,2,3,4,5,6,7,8,9}.</index>                                                                                |
| EXAMPLE        | For SDS2000X series, when the AWG option is installed,<br>the following command set the index of waveform type to<br>3. |
|                | Command message:<br>ARWV INDEX,3                                                                                        |



| WGEN            | PRODUCT?   PROD?<br>Query                                                             |
|-----------------|---------------------------------------------------------------------------------------|
| DESCRIPTION     | The PRODUCT? query returns the product model or the                                   |
|                 | upper limit of frequency of the output signal.                                        |
| QUERY SYNTAX    | PRODUCT? <parameter></parameter>                                                      |
|                 | <pre><parameter>:={MODEL,BAND}</parameter></pre>                                      |
|                 | MODEL — return the product model.                                                     |
|                 | $\bullet BAND - return \ the \ upper \ limit \ of \ frequency \ of \ the \ output \\$ |
|                 | signal.                                                                               |
| RESPONSE FORMAT | PRODUCT <parameter>,<value></value></parameter>                                       |
| EXAMPLE         | For SDS2000X series, when the AWG option is installed,                                |
|                 | the following query returns the upper limit of frequency of                           |
|                 | the output signal.                                                                    |
|                 | Query message:                                                                        |
|                 | PROD? BAND                                                                            |
|                 | Response message:                                                                     |
|                 | PROD BAND,25MHz                                                                       |
|                 |                                                                                       |



| WGEN            | STORELIST?   STL?<br>Query                                                                                                                                                                                                                                                                                                       |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The STORELIST? query returns the stored arbitrary waveforms list with indexes and names. If the store unit is empty, the command will return "EMPTY" string.                                                                                                                                                                     |
| QUERY SYNTAX    | STORELIST? <type></type>                                                                                                                                                                                                                                                                                                         |
|                 | <type>:={DEBUG,RELEASE}</type>                                                                                                                                                                                                                                                                                                   |
|                 | <ul> <li>DEBUG — return built-in waveforms. (include sine, noise, cardiac, gaus_pulse, exp_rise, exp_fall, and four waveforms defined by user)</li> <li>RELEASE — return four waveforms defined by user.</li> </ul>                                                                                                              |
| RESPONSE FORMAT | STORELIST <list></list>                                                                                                                                                                                                                                                                                                          |
| EXAMPLE         | For SDS2000X series, when the AWG option is installed,<br>the following query returns the waveform storage list.<br>Query message:<br><i>STL? DEBUG</i><br>Response message:<br><i>STL</i><br><i>M0,SINE,M1,NOISE,M2,CARDIAC,M3,GAUS_PULSE,M4</i><br><i>,EXP_RISE,M5,EXP_FALL,M6,EMPTY,M7,EMPTY,M8,E</i><br><i>MPTY,M9,EMPTY</i> |



WGEN

# WAVEGENERATOR | WGEN

Command/Query

# DESCRIPTION The WAVEGENERATOR command sets parameters of basic waveform.

The WAVEGENERATOR? query returns the waveform parameters.

## COMMAND SYNTAX WAVEGENERATOR parameter>,<value>

<parameter>:= {a parameter from the table below}.
<value>:={value of the corresponding parameter}.

| Parameters | Value                      | Description:=                                              |
|------------|----------------------------|------------------------------------------------------------|
| OUTP       | <state></state>            | {ON,OFF}                                                   |
|            |                            | {SINE,SQUARE,RAMP,PULSE,DC,NOISE,CARDIAC,GAUS_             |
|            |                            | PULSE,EXP_RISE,EXP_FALL,ARB1,ARB2,ARB3,ARB4}               |
| VVVIP      | <type></type>              | If the command doesn't set basic waveform type, WVPT will  |
|            |                            | be set to the current waveform.                            |
| EDEO       | froquopovo                 | 0.000001 Hz to 25000000 Hz. Not valid when WVTP is         |
| FREQ       | <li>irequency&gt;</li>     | NOISE or DC.                                               |
| AMPL       | <amplitude></amplitude>    | 0.004V to 6 V. Not valid when WVTP is NOISE or DC.         |
| OFST       | <offset></offset>          | -(6-AMP)/2 to (6-AMP)/2 (V). Not valid when WVTP is NOISE. |
| DCOFST     | <dc_offset></dc_offset>    | -3 to 3 V. Only valid when WVTP is DC.                     |
|            | - dutus                    | 20% to 80%.                                                |
| DUTY       | <ul><li>duly&gt;</li></ul> | Only valid when WVTP is SQUARE.                            |
| CV/MM      |                            | 0 to 100%.                                                 |
| STIVIIVI   | <sym></sym>                | Only valid when WVTP is RAMP.                              |
| WIDTH      | <width></width>            | 0.000000048 to 0.001 s. Only valid when WVTP is PULSE.     |
|            | - otd>                     | 0.0003V to 0.45V.                                          |
| SIDEV      | <sia></sia>                | Only valid when WVTP is NOISE.                             |
|            |                            | -(0.45-STD)*(20/3)-(0.45-STD)*(20/3) (V).                  |
|            | <pre>&gt;mean&gt;</pre>    | Only valid when WVTP is NOISE.                             |
| LOAD       | <load></load>              | { HZ, 50}.                                                 |



| QUERY SYNTAX    | WAVEGENERATOR? <pre>parameter&gt;</pre>                                    |
|-----------------|----------------------------------------------------------------------------|
|                 | <pre><parameter>:={OUTP,WVTP,FREQ,AMPL,OFST,DCOFS</parameter></pre>        |
|                 | T,DUTY,SYMM,WIDTH,STDEV,MEAN,LOAD,ALL}                                     |
| RESPONSE FORMAT | WAVEGENERATOR <parameter>,<value></value></parameter>                      |
| EXAMPLE         | <ul> <li>For SDS2000X series, when the AWG option is installed,</li> </ul> |
|                 | the following command set the type to square, amplitude                    |
|                 | to 2.5 V, frequency to 10 kHz and duty to 45%.                             |
|                 | Command message:                                                           |
|                 | WGEN                                                                       |
|                 | TYPE,SQUARE,FREQ,10000Hz,AMPL,2.5V,DUTY,45%                                |
|                 | <ul> <li>For SDS2000X series, when the AWG option is installed,</li> </ul> |
|                 | the following command set the type to noise, stdev to 0.2                  |
|                 | V, mean to 1 V.                                                            |
|                 | Command message:                                                           |
|                 | WGEN TYPE,NOISE,STDEV,0.2V,MEAN,1V                                         |
|                 | <ul> <li>For SDS2000X series, when the AWG option is installed,</li> </ul> |
|                 | the following command set the output to off.                               |
|                 | Command message:                                                           |
|                 | WGEN OUTP,OFF                                                              |



| WGEN             | WAVE_PARA?   WVPR?<br>Query                                                                                                                                                                                                                                                      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The WAVE_PARA? query returns the location, name, frequency, amplitude and offset of four arbitrary waveforms.                                                                                                                                                                    |
| QUERY SYNTAX     | WAVE_PARA? <index></index>                                                                                                                                                                                                                                                       |
| RESPONSE FORMAT  | WAVE_PARA<br>POS, <index>,WVNM,<name>,FREQ,<freq>,AMPL,<ampl<br>&gt;,OFST,<ofst></ofst></ampl<br></freq></name></index>                                                                                                                                                          |
| EXAMPLE          | For SDS2000X series, when the AWG option is installed,<br>the following query returns the parameters of M0.<br>Query message:<br><i>WVPR?</i> M0<br>Response message:<br><i>WVPR</i><br><i>POS,M0,WVNM,SINE,FREQ,1.000000e+03,AMPL,6.0000</i><br><i>00e+00,OFST,0.000000e+00</i> |
| RELATED COMMANDS | STL?                                                                                                                                                                                                                                                                             |



# WGEN Commands for SDS1000X-E/SDS2000X-E

When the oscilloscope supports the function generator module (SAG1021I) and is licensed (Option FG), you can output basic wave, such as sine, square, ramp, pulse, DC, noise. At present, it does not support the instruction of setting built-in waveform and arbitrary waveform.

The WGEN commands are the same as that of Siglent SDG series, so the format is not consistent with other groups. Refer to SDG programming guide for details.

- ARbWaVe
- BaSic\_WaVe
- OUTPut
- SYNC
- VOLTPRT

## Note:

These commands are only valid for SDS1000X-E and SDS2000X-E installed AWG option.



### WGEN

## ARbWaVe Command/Query

## DESCRIPTION

COMMAND SYNTAX

This command sets or gets the basic wave parameters.

<channel>:ARbWaVe INDEX,<index> <channel>:ARbWaVe NAME,<name>

<channel>:={C1}, SAG1021I only supports one output channel.

<index>:= the index of the arbitrary waveform from the table below.

<name>:= the name of the arbitrary waveform from the table below.

## Note:

This table is just an example, the index depends on the specific model. The "STL?" query can be used to get the accurate mapping relationship between the index and name.

| Index | Name     | Index | Name      | Index | Name      | Index | Name     |
|-------|----------|-------|-----------|-------|-----------|-------|----------|
| 0     | Sine     | 12    | Logfall   | 24    | Gmonopuls | 36    | Triang   |
| 1     | Noise    | 13    | Logrise   | 25    | Tripuls   | 37    | Harris   |
| 2     | StairUp  | 14    | Sqrt      | 26    | Cardiac   | 38    | Bartlett |
| 3     | StairDn  | 15    | Root3     | 27    | Quake     | 39    | Tan      |
| 4     | Stairud  | 16    | X^2       | 28    | Chirp     | 40    | Cot      |
| 5     | Ppulse   | 17    | X^3       | 29    | Twotone   | 41    | Sec      |
| 6     | Npulse   | 18    | Sinc      | 30    | Snr       | 42    | Csc      |
| 7     | Trapezia | 19    | Gaussian  | 31    | Hamming   | 43    | Asin     |
| 8     | Upramp   | 20    | Dlorentz  | 32    | Hanning   | 44    | Acos     |
| 9     | Dnramp   | 21    | Haversine | 33    | Kaiser    | 45    | Atan     |
| 10    | Exp_fall | 22    | Lorentz   | 34    | Blackman  | 46    | Acot     |
| 11    | Exp_rise | 23    | Gauspuls  | 35    | Gausswin  | 47    | Square   |



| QUERY SYNTAX     | <channel>:ARbWaVe?<br/><channel>:= {C1}</channel></channel>                                     |
|------------------|-------------------------------------------------------------------------------------------------|
| RESPONSE FORMAT  | <channel>:ARWV INDEX,<index>,NAME,<name></name></index></channel>                               |
| EXAMPLE          | Set CH1 current waveform by index 2:<br><i>C1:ARWV INDEX,2</i>                                  |
|                  | Read CH1 current waveform:<br><i>C1:ARWV?</i><br>Return:<br><i>C1:ARWV INDEX,2,NAME,StairUp</i> |
|                  | Set CH1 current waveform to wave_1 by name.<br>C1:ARWV NAME,wave_1                              |
| RELATED COMMANDS | STL?                                                                                            |



WGEN

BaSic\_WaVe Command/Query

| DESCRIPTION    | This command sets or gets the basic wave parameters.                   |
|----------------|------------------------------------------------------------------------|
| COMMAND SYNTAX | <channel>:BaSic_WaVe <parameter>,<value></value></parameter></channel> |

<channel>:={C1}, SAG1021I only support one output channel.

<parameter>:= a parameter from the table below.

<value>:= value of the corresponding parameter.

| Parameters | Value                   | Description                                                   |
|------------|-------------------------|---------------------------------------------------------------|
| WVTP       | <type></type>           | := {SINE, SQUARE, RAMP, PULSE, NOISE, ARB, DC,                |
|            |                         | PRBS, IQ}. If the command doesn't set basic waveform          |
|            |                         | type, WVPT will be set to the current waveform.               |
| FRQ        | <frequency></frequency> | := frequency. The unit is Hertz "Hz". Refer to the data       |
|            |                         | sheet for the range of valid values. Not valid when           |
|            |                         | WVTP is NOISE or DC.                                          |
| PERI       | <period></period>       | := period. The unit is seconds "s". Refer to the data         |
|            |                         | sheet for the range of valid values. Not valid when           |
|            |                         | WVTP is NOISE or DC.                                          |
| AMP        | <amplitude></amplitude> | := amplitude. The unit is volts, peak-to-peak "Vpp". Refer    |
|            |                         | to the data sheet for the range of valid values. Not valid    |
|            |                         | when WVTP is NOISE or DC.                                     |
| OFST       | <offset></offset>       | := offset. The unit is volts "V". Refer to the data sheet for |
|            |                         | the range of valid values. Not valid when WVTP is             |
|            |                         | NOISE.                                                        |
| SYM        | <symmetry></symmetry>   | := {0 to 100}. Symmetry of RAMP. The unit is "%". Only        |
|            |                         | settable when WVTP is RAMP.                                   |
| DUTY       | <duty></duty>           | := {0 to 100}. Duty cycle. The unit is "%". Value depends     |
|            |                         | on frequency. Only settable when WVTP is SQUARE or            |
|            |                         | PULSE.                                                        |
| STDEV      | <stdev></stdev>         | := standard deviation of NOISE. The unit is volts "V".        |



|                 |                 | Refer to the data sheet for the range of valid values.           |
|-----------------|-----------------|------------------------------------------------------------------|
|                 |                 | Only settable when WVTP is NOISE.                                |
|                 |                 | := mean of NOISE. The unit is volts "V". Refer to the            |
| MEAN            | <mean></mean>   | data sheet for the range of valid values. Only settable          |
|                 |                 | when WVTP is NOISE.                                              |
|                 |                 | := positive pulse width. The unit is seconds "s". Refer to       |
| WIDTH           | <width></width> | the data sheet for the range of valid values. Only               |
|                 |                 | settable when WVTP is PULSE.                                     |
|                 |                 |                                                                  |
| QUERY SYNTAX    |                 | <channel>:BaSic_WaVe?</channel>                                  |
|                 |                 |                                                                  |
|                 |                 | <channel>:= {C1}</channel>                                       |
|                 |                 |                                                                  |
| RESPONSE FORMAT |                 | <channel>:BSVVV <parameter></parameter></channel>                |
|                 |                 | <pre>charameters:= All the harameters of the current basic</pre> |
|                 |                 | waveform                                                         |
|                 |                 |                                                                  |
| EXAMPLE         |                 | Change the waveform type of C1 to Ramp:                          |
|                 |                 | C1:BSWV WVTP,RAMP                                                |
|                 |                 |                                                                  |
|                 |                 | Change the frequency of C1 to 2000 Hz:                           |
|                 |                 | C1:BSWV FRQ,2000                                                 |
|                 |                 |                                                                  |
|                 |                 | Set the amplitude of C1 to 3 Vpp:                                |
|                 |                 | C1:BSWV AMP,3                                                    |
|                 |                 |                                                                  |
|                 |                 | Return parameters of C1 from the device:                         |
|                 |                 |                                                                  |
|                 |                 |                                                                  |
|                 |                 |                                                                  |
|                 |                 | WVVIF,SINE,FRQ, IUUFIZ,PERI,UUIS,AINF,ZV,OFSI,UV                 |
|                 |                 | , TLE V, I V, LLE V, - I V, <b>FT</b> 3E, U                      |



| WGEN            | OUTPut<br>Command/Query                                                                                                                                                       |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | This command enables or disables the output port(s) at<br>the front panel. The query returns "ON" or "OFF" and<br>"LOAD", "PLRT", "RATIO" parameters.                         |
| COMMAND SYNTAX  | <channel>:OUTPut <state>,LOAD,<load></load></state></channel>                                                                                                                 |
|                 | <channel>:= {C1}, SAG1021I only support one output channel.</channel>                                                                                                         |
|                 | <state>:= {ON, OFF}</state>                                                                                                                                                   |
|                 | <load>:= {50, HZ}. The unit is ohm.</load>                                                                                                                                    |
| QUERY SYNTAX    | <channel>:OUTPut?</channel>                                                                                                                                                   |
| RESPONSE FORMAT | <channel>:OUTP<br/><state>,LOAD,<load>,PLRT,<polarity></polarity></load></state></channel>                                                                                    |
|                 | <state>:= {ON, OFF}</state>                                                                                                                                                   |
|                 | <load>:= {50, HZ}</load>                                                                                                                                                      |
|                 | <pre><polarity>:= {NOR, INVT}, in which NOR refers to normal, and INVT refers to invert. SAG and the built-in waveform generator only support to set to NOR.</polarity></pre> |
| EXAMPLE         | Turn on CH1:<br>C1:OUTP ON                                                                                                                                                    |
|                 | Read CH1 output state:<br><i>C1:OUTP?</i><br>Return:<br><i>C1:OUTP_ONU_OAD_HZ_PLPT_NOP</i>                                                                                    |
|                 | UI.UUIF UN,LUAD, MZ, FLKI, NUK                                                                                                                                                |



Set the load of CH1 to 50 ohm: *C1:OUTP LOAD,50* 

Set the load of CH1 to HiZ: C1:OUTP LOAD,HZ


| WGEN            | SYNC<br>Command/Query                                                                  |
|-----------------|----------------------------------------------------------------------------------------|
| DESCRIPTION     | This command sets or gets the synchronization signal.                                  |
| COMMAND SYNTAX  | <channel>:SYNC <state></state></channel>                                               |
|                 | <channel>:= {C1}, SAG1021I only support one output channel.</channel>                  |
|                 | <state>:= {ON, OFF}</state>                                                            |
| QUERY SYNTAX    | <channel>:SYNC?</channel>                                                              |
|                 | <channel>:= {C1}</channel>                                                             |
| RESPONSE FORMAT | <channel>:SYNC <state>,TYPE,<type></type></state></channel>                            |
|                 | <channel>:= {C1}</channel>                                                             |
|                 | <state>:= {ON, OFF}</state>                                                            |
|                 | <type>:={CH1}, SAG1021I only support one output channel, so it can only be CH1.</type> |
| EXAMPLE         | Turn on sync output:                                                                   |
|                 | C1:SYNC ON                                                                             |
|                 | Read state of CH1 sync.                                                                |
|                 | C1:SYNC?                                                                               |
|                 | Return:                                                                                |
|                 | C1:SYNC ON,TYPE,CH1                                                                    |



289

| WGEN            | VOLTPRT<br>Command/Query                                        |
|-----------------|-----------------------------------------------------------------|
| DESCRIPTION     | This commend sets or gets the state of over-voltage protection. |
| COMMAND SYNTAX  | VOLTPRT <state><br/><state>:= {ON, OFF}</state></state>         |
| QUERY SYNTAX    | VOLTPRT?                                                        |
| RESPONSE FORMAT | VOLTPRT <state></state>                                         |



## **Obsolete Commands for Old Models**

Obsolete commands are older forms of commands that are provided to reduce customer rework for existing systems and programs.

Generally, these commands are mapped onto some of the commands, but may not strictly have the same behavior as the new command.

None of the obsolete commands are guaranteed to remain functional in future products. New systems and programs should use the new commands.

| Obsolete           | Current Command | Behavior Differences                      |  |
|--------------------|-----------------|-------------------------------------------|--|
| command Equivalent |                 |                                           |  |
| ACAL               | none            |                                           |  |
| AUTTS              | none            |                                           |  |
| COUN               | none            |                                           |  |
| CRAU               | none            |                                           |  |
| CSVS               | none            |                                           |  |
| DATE               | none            |                                           |  |
| FFTZ               | FFTT?           | Modify the instruction name and usage.    |  |
| FILT               | none            |                                           |  |
| FILTS              | none            |                                           |  |
| PDET               | ACQW            | The instructions are merged into one.     |  |
| PERS               | PESU            | The instructions are merged into one.     |  |
| PFCT               | PFSC PFBF PFOP  | Split one command into multiple commands. |  |
|                    | PFFS            |                                           |  |
| REC                | none            |                                           |  |
| REFS               | REFSR REFLA RE  | Split one command into multiple commands. |  |
|                    | FDS REFSA       |                                           |  |
| VPOS               | FFTP            | Modify the instruction name and usage     |  |



| Obsolete         | AUTO_CALIBRATE   ACAL<br>Command/Query                                                                                                     |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The AUTO_CALIBRATE command is used to enable or disable the quick calibration of the instrument.                                           |
|                  | The quick calibration can be disabled by sending the command "ACAL OFF". The query "*CAL?" can be set to fully calibrate the oscilloscope. |
|                  | The AUTO_CALIBRATE? query returns whether quick-<br>calibration is enabled.                                                                |
| COMMAND SYNTAX   | AUTO_CALIBRATE <state></state>                                                                                                             |
|                  | <state>:={ON,OFF}</state>                                                                                                                  |
| QUERY SYNTAX     | AUTO_CALIBRATE?                                                                                                                            |
| RESPONSE FORMAT  | AUTO_CALIBRATE <state></state>                                                                                                             |
| EXAMPLE          | The following command disables a quick calibration.<br>Command message:<br><i>ACAL OFF</i>                                                 |
| RELATED COMMANDS | *CAL?                                                                                                                                      |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | yes    |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | yes    |
| SDS1000X                   | no     |
| SDS1000X-E                 | no     |



| Obsolete         | AUTO_TYPESET   AUTTS<br>Command/Query                                                                                                                                                                                                                                                |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DESCRIPTION      | The AUTO_TYPESET command selects the specified type of automatically adjusting which is used to display.                                                                                                                                                                             |  |
| COMMAND SYNTAX   | AUTO_TYPESET <type></type>                                                                                                                                                                                                                                                           |  |
|                  | <type>:={SP,MP,RS,DRP,RC}<br/>•SP — only one period to be displayed.<br/>•MP — multiple periods to be displayed.<br/>•RS — the waveform is triggered on the rise side.<br/>•DRP — the waveform is triggered on the drop side.<br/>•RC — go back to the state before auto set.</type> |  |
| QUERY SYNTAX     | AUTO_TYPESET?                                                                                                                                                                                                                                                                        |  |
| RESPONSE FORMAT  | AUTO_TYPESET <type></type>                                                                                                                                                                                                                                                           |  |
|                  | The following command sets the type of automatic adjustment to multiple periods.<br>Command message:<br><i>AUTTS MP</i>                                                                                                                                                              |  |
| RELATED COMMANDS | ASET                                                                                                                                                                                                                                                                                 |  |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | yes    |
| SDS1000A                   | yes    |
| SDS1000CML+/CNL+/DL+/E+/F+ | yes    |
| SDS2000X                   | yes    |
| SDS1000X                   | yes    |
| SDS1000X-E                 | no     |



| Obsolete        | COUNTER   COUN<br>Command/Query                                                            |  |
|-----------------|--------------------------------------------------------------------------------------------|--|
| DESCRIPTION     | The COUNTER command enables or disables the cymometer display on the screen of instrument. |  |
|                 | The COUNTER? query returns whether the cymometer i displayed on the screen of instrument.  |  |
| COMMAND SYNTAX  | COUNTER <state></state>                                                                    |  |
|                 | < state >:={ON,OFF}                                                                        |  |
| QUERY SYNTAX    | COUNTER?                                                                                   |  |
| RESPONSE FORMAT | COUNTER <state></state>                                                                    |  |
| EXAMPLE         | The following command enables the cymometer display.<br>Command message:<br>COUN ON        |  |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | yes    |
| SDS1000A                   | yes    |
| SDS1000CML+/CNL+/DL+/E+/F+ | yes    |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | no     |



#### Obsolete

# CURSOR\_AUTO | CRAU

#### Command

| DESCRIPTION    | The CURSOR_AUTO command sets the cursor mode to Auto.                                     |
|----------------|-------------------------------------------------------------------------------------------|
| COMMAND SYNTAX | CRAU                                                                                      |
| EXAMPLE        | The following command changes the cursor mode to Auto.<br>Command message:<br><i>CRAU</i> |

#### Note:

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | yes    |
| SDS1000A                   | yes    |
| SDS1000CML+/CNL+/DL+/E+/F+ | yes    |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | no     |



CSV\_SAVE | CSVS Command/Query

 DESCRIPTION
 The CSV\_SAVE command enables or disables to save the parameter when storing CSV format waveform.

The CSV\_SAVE? query returns the current state of saving the parameter when storing waveform data of CSV format.

**COMMAND SYNTAX** 

SAVE

Format 1: CSV\_SAVE <state>

<state>:={OFF,ON}

•ON — The file contains the oscilloscope model, serial number, software version number, and the current parameter configuration of the oscilloscope as shown below.

•OFF — The file only contains the waveform data as shown below.

#### State is ON:

|    | Å                | В                      | С         | D        |
|----|------------------|------------------------|-----------|----------|
| 1  | Record Length    | 700                    |           |          |
| 2  | Sample Interval  | CH1:0.0000000020000 CH | 2:0.00000 | 00020000 |
| 3  | Vertical Units   | CH1:V CH2:V            |           |          |
| 4  | Vertical Scale   | CH1:1.00 CH2:1.00      |           |          |
| 5  | Vertical Offset  | CH1:0.00 CH2:0.00      |           |          |
| 6  | Horizontal Units | us                     |           |          |
| 7  | Horizontal Scale | 0.01                   |           |          |
| 8  | Model Number     | SDS1204X-E             |           |          |
| 9  | Serial Number    | SDS1EBAC0L0098         |           |          |
| 10 | Software Version | 7.6.1.13               |           |          |
| 11 | Source           | CH1                    | CH2       |          |
| 12 | Second           | Volt                   | Volt      |          |
| 13 | 0                | 0.32                   | -0.04     |          |
| 14 | 0.00000002       | 0.32                   | -0.04     |          |
| 15 | 0.00000004       | 0.32                   | -0.04     |          |
| 16 | 0.00000006       | 0.36                   | 0         |          |
| 17 | 0.00000008       | 0.32                   | -0.04     |          |
| 18 | 0.0000001        | 0.32                   | -0.04     |          |
| 19 | 0.00000012       | 0.32                   | -0.04     |          |

State is OFF:



|    | A       | В     | С     | D | E |
|----|---------|-------|-------|---|---|
| 1  | Source  | CH1   | CH2   |   |   |
| 2  | Second  | Volt  | Volt  |   |   |
| 3  | 0       | -0.48 | -0.08 |   |   |
| 4  | 2E-09   | -0.44 | -0.04 |   |   |
| 5  | 4E-09   | -0.48 | -0.08 |   |   |
| 6  | 6E-09   | -0.48 | -0.08 |   |   |
| 7  | 8E-09   | -0.48 | -0.08 |   |   |
| 8  | 1E-08   | -0.48 | -0.08 |   |   |
| 9  | 1.2E-08 | -0.48 | -0.04 |   |   |
| 10 | 1.4E-08 | -0.48 | -0.04 |   |   |
| 11 | 1.6E-08 | -0.48 | -0.04 |   |   |
| 12 | 1.8E-08 | -0.48 | -0.04 |   |   |
| 13 | 2E-08   | -0.48 | -0.04 |   |   |

Format 2:

CSV\_SAVE SAVE,<state>

<state>:={OFF,ON}

Format 3: CSV\_SAVE DD,<DD>,SAVE,<state>

<DD>:={MAX,DIS}

■MAX — save as the maximum data depth.

•DIS — save as the date depth which is displayed on the screen.

<state>:={OFF,ON}

Note:

The table below shows the available format in each oscilloscope series.

QUERY SYNTAX

CSV\_SAVE?

CSV\_SAVE <state>

**RESPONSE FORMAT** 

EXAMPLE

For SDS1000X-E series, the following command sets "Param save" to off. Command message: CSVS OFF

SVS UFF



#### Format in Each Oscilloscope Series

| Model                      | Command Format |
|----------------------------|----------------|
| SDS1000CFL                 | Format 3       |
| SDS1000A                   | Format 3       |
| SDS1000CML+/CNL+/DL+/E+/F+ | Format 3       |
| SDS2000X                   | Format 2       |
| SDS1000X                   | Format 2       |
| SDS1000X-E                 | Format 1       |



| Obsolete        | DATE<br>Command/Query                                                                                                                                                                                                         |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION     | The DATE command changes the date/time of the oscilloscope's internal real-time clock. Validity checking is performed to ensure that the date and the time are valid.                                                         |
| COMMAND SYNTAX  | DATE <day>,<month>,<year>,<hour>,<min>,<second></second></min></hour></year></month></day>                                                                                                                                    |
|                 | <day>:= 1 to 31.<br/><month>:={JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,<br/>OCT,NOV,DEC}<br/><year>:= 1990 to 2089.<br/><hour>:= 0 to 23.<br/><min>:= 0 to 59.<br/><second>:= 0 to 59.</second></min></hour></year></month></day> |
| QUERY SYNTAX    | DATE?                                                                                                                                                                                                                         |
| RESPONSE FORMAT | DATE <day>,<month>,<year>,<hour>,<min>,<second></second></min></hour></year></month></day>                                                                                                                                    |
| EXAMPLE         | This following command sets the date to NOV. 1, 2017<br>and the time to 14:38:16.<br>Command message:<br><i>DATE 1,NOV,2017,14,38,16</i>                                                                                      |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | yes    |
| SDS1000A                   | no     |
| SDS1000CML+/CNL+/DL+/E+/F+ | no     |
| SDS2000X                   | yes    |
| SDS1000X                   | no     |
| SDS1000X-E                 | no     |



| Obsolete         | FFT_ZOOM   FFTZ<br>Command/Query                                                       |
|------------------|----------------------------------------------------------------------------------------|
| DESCRIPTION      | The FFT_ZOOM command selects the specified zoom of FFT.                                |
|                  | The FFT_ZOOM? query returns the current zoom in/out of FFT.                            |
| COMMAND SYNTAX   | FFT_ZOOM <zoom></zoom>                                                                 |
|                  | <zoom>:={1,2,5,10}</zoom>                                                              |
| QUERY SYNTAX     | FFT_ZOOM?                                                                              |
| RESPONSE FORMAT  | FFT_ZOOM <zoom></zoom>                                                                 |
| EXAMPLE          | The following command sets the zoom factor of FFT to 1X.<br>Command message:<br>FFTZ 1 |
| RELATED COMMANDS | FFTT?                                                                                  |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | yes    |
| SDS1000A                   | yes    |
| SDS1000CML+/CNL+/DL+/E+/F+ | yes    |
| SDS2000X                   | yes    |
| SDS1000X                   | yes    |
| SDS1000X-E                 | no     |



| Obsolete         | FILTER   FILT<br>Command/Query                                                                  |
|------------------|-------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The FILTER command enables or disables filter of the specified trace.                           |
|                  | The FILTER? query returns whether the filter of specified trace is enabled.                     |
| COMMAND SYNTAX   | <channel>:FILTER <state></state></channel>                                                      |
|                  | <channel>:={C1,C2,C3,C4}<br/><state>:={ON,OFF}</state></channel>                                |
| QUERY SYNTAX     | <channel>:FILTER?</channel>                                                                     |
| RESPONSE FORMAT  | <channel>:FILTER <state></state></channel>                                                      |
| EXAMPLE          | The following command enables the filter of Channel 1.<br>Command message.<br><i>C1:FILT ON</i> |
| RELATED COMMANDS | FILTS                                                                                           |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | yes    |
| SDS1000A                   | yes    |
| SDS1000CML+/CNL+/DL+/E+/F+ | yes    |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | no     |



| Obsolete         | FILT_SET   FILTS<br>Command/Query                                                              |
|------------------|------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The FILT_SET command selects the specified type of filter, and sets the limit value of filter. |
|                  | The FILT_SET? query returns current parameter of the filter.                                   |
| COMMAND SYNTAX   | <channel>:FILT_SET_TYPE,<type>,<limit>,<limit_value></limit_value></limit></type></channel>    |
|                  | <channel>:={C1,C2,C3,C4}</channel>                                                             |
|                  | <type>:={LP,HP,BP,BR}</type>                                                                   |
|                  | ■LP — low-pass.                                                                                |
|                  | ■HP — high-pass.                                                                               |
|                  | ■BP — band-pass.                                                                               |
|                  | ■BR — band-reject.                                                                             |
|                  | <limit>:={UPPLIMIT,LOWLIMIT}</limit>                                                           |
|                  | Note:                                                                                          |
|                  | If selected the <limit>, the <type> must be related.</type></limit>                            |
| QUERY SYNTAX     | <channel>:FILT_SET?</channel>                                                                  |
| RESPONSE FORMAT  | <channel>:FILTER TYPE,<type>,<limit>,<limit_value></limit_value></limit></type></channel>      |
| EXAMPLE          | The following command changes the type of filter to band-                                      |
|                  | pass, and sets the up-limit to 200 kHz and the low-limit to                                    |
|                  | 100 kHz.                                                                                       |
|                  | Command message:                                                                               |
|                  | C1:FILTS                                                                                       |
|                  | TYPE,BP,UPPLIMIT,200KHz,LOWLIMIT,100KHz                                                        |
| RELATED COMMANDS | FILT                                                                                           |

The table below shows the availability of command in each oscilloscope series.

302



#### Digital Oscilloscope Series Programming Guide

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | yes    |
| SDS1000A                   | yes    |
| SDS1000CML+/CNL+/DL+/E+/F+ | yes    |
| SDS2000X                   | no     |
| SDS1000X                   | no     |
| SDS1000X-E                 | no     |



| Obsolete         | PEAK_DETECT   PDET<br>Command/Query                                                  |
|------------------|--------------------------------------------------------------------------------------|
| DESCRIPTION      | The PEAK_DETECT command set the switch of Peak Detect acquisition.                   |
|                  | The PEAK_DETECT? query returns the current status of<br>Peak Detect acquisition.     |
| COMMAND SYNTAX   | PEAK_DETECT <state></state>                                                          |
|                  | <state>:={ON,OFF}</state>                                                            |
| QUERY SYNTAX     | PEAK_DETECT?                                                                         |
| RESPONSE FORMAT  | PEAK_DETECT <state></state>                                                          |
| EXAMPLE          | The following command set Peak Detect acquisition on.<br>Command message:<br>PDET ON |
| RELATED COMMANDS | ACQW                                                                                 |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | yes    |
| SDS1000A                   | yes    |
| SDS1000CML+/CNL+/DL+/E+/F+ | yes    |
| SDS2000X                   | yes    |
| SDS1000X                   | yes    |
| SDS1000X-E                 | no     |



| Obsolete         | PF_CONTROL   PFCT<br>Command/Query                                                                                                                                                                                                      |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The PF_CONTROL command controls the Pass/Fail controlling options "operate", "output" and the "stop on output".                                                                                                                         |
|                  | See instrument's Operator Manual for these options.                                                                                                                                                                                     |
|                  | The PF_CONTROL? query returns the controlling options of the pass/fail.                                                                                                                                                                 |
| COMMAND SYNTAX   | PF_CONTROL<br>TRACE, <trace>,CONTROL,<control>,OUTPUT,<output>,<br/>OUTPUTSTOP,<state></state></output></control></trace>                                                                                                               |
|                  | <trace>:={C1,C2,C3,C4}<br/><control>:={START,STOP}<br/><output>:={FAIL,PASS}<br/><state>:={ON,OFF}</state></output></control></trace>                                                                                                   |
| QUERY SYNTAX     | PF_CONTROL?                                                                                                                                                                                                                             |
| RESPONSE FORMAT  | PF_CONTROL<br>TRACE, <trace>,CONTROL,<control>,OUTPUT,<output>,<br/>OUTPUTSTOP,<state></state></output></control></trace>                                                                                                               |
| EXAMPLE          | The following command sets source to Channel 1,<br>"operate" to "start", "output" to "pass" and "stop on output"<br>to "off".<br>Command message:<br><i>PFCT</i><br><i>TRACE,C1,CONTROL,START,OUTPUT,PASS,OUTPUT</i><br><i>STOP,OFF</i> |
| RELATED COMMANDS | PFSC                                                                                                                                                                                                                                    |

305



PFBF PFOP PFFS

#### Note:

The table below shows the availability of command in each oscilloscope series.

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | yes    |
| SDS1000A                   | yes    |
| SDS1000CML+/CNL+/DL+/E+/F+ | yes    |
| SDS2000X                   | yes    |
| SDS1000X                   | yes    |
| SDS1000X-E                 | no     |



Obsolete

| DESCRIPTION      | The PERSIST command enables or disables the persistence display mode. |
|------------------|-----------------------------------------------------------------------|
| COMMAND SYNTAX   | PERSIST <mode></mode>                                                 |
|                  | <mode>:={ON,OFF}</mode>                                               |
| QUERY SYNTAX     | PERSIST?                                                              |
| RESPONSE FORMAT  | PERSIST <mode></mode>                                                 |
| EXAMPLE          | The following command turns the persistence to ON.                    |
|                  | Command message:                                                      |
|                  | PERS ON                                                               |
| RELATED COMMANDS | PESU                                                                  |

#### Note:

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | yes    |
| SDS1000A                   | yes    |
| SDS1000CML+/CNL+/DL+/E+/F+ | yes    |
| SDS2000X                   | yes    |
| SDS1000X                   | yes    |
| SDS1000X-E                 | no     |



| Obsolete         | RECALL   REC<br>Command                                                                                                                                                                                                                                                                                  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The RECALL command recalls a waveform file from the current directory on mass storage into any or all of the internal memories M1 to M10 (or M20 in the CFL series).                                                                                                                                     |
| COMMAND SYNTAX   | <memory>:RECALL DISK,<device>,FILE, '<filename>'</filename></device></memory>                                                                                                                                                                                                                            |
|                  | <memory>:={M1~M10} (M1~M20 for CFL series)<br/><device>:={UDSK}<br/><filename>:= A waveform file under a legal DOS path. A<br/>filename-string of up to eight characters, with the<br/>extension ".DAV".(It can include the "/" character to define<br/>the root directory)</filename></device></memory> |
| EXAMPLE          | The following command recalls a waveform file called<br>"C1WF.DAV" from u-disk into Memory M1.<br>Command message:<br><i>M1:REC DISK,UDSK,FILE,'C1WF.DAV'</i>                                                                                                                                            |
| RELATED COMMANDS | *RCL                                                                                                                                                                                                                                                                                                     |

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | yes    |
| SDS1000A                   | yes    |
| SDS1000CML+/CNL+/DL+/E+/F+ | yes    |
| SDS2000X                   | yes    |
| SDS1000X                   | yes    |
| SDS1000X-E                 | no     |



| Obsolete         | REF_SET   REFS<br>Command/Query                                                                                                                             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION      | The REF_SET command sets the reference waveform and its options.                                                                                            |
|                  | The REF_ SET? query returns the settings of reference waveform.                                                                                             |
| COMMAND SYNTAX   | REF_SET                                                                                                                                                     |
|                  | TRACE, <trace>,REF,<ref>,STATE,<state>[,SAVE,DO]</state></ref></trace>                                                                                      |
|                  | <trace>:={C1,C2,C3,C4,MATH}</trace>                                                                                                                         |
|                  | <ref>:={RA,RB,RC,RD}. Rx(x=A, B, C, D) is the reference<br/>waveform which can be stored or displayed.</ref>                                                |
|                  | The state enables or disables to display the specified reference waveform.                                                                                  |
|                  | Note:<br>If the command syntax include 'SAVE, DO', the specified<br>trace will be saved to the specified reference waveform.                                |
| QUERY SYNTAX     | REF_SET? REF, <ref></ref>                                                                                                                                   |
| RESPONSE FORMAT  | REF_SET REF, <ref>,STATE,<state></state></ref>                                                                                                              |
| EXAMPLE          | The following command saves the Channel 1 waveform to REFA, and display REFA on screen.<br>Command message:<br><i>REFS_TRACE,C1,REF,RA,STATE,ON,SAVE,DO</i> |
| RELATED COMMANDS | REFSR                                                                                                                                                       |
|                  | REFLA                                                                                                                                                       |
|                  | REFDS                                                                                                                                                       |
|                  | REFSA                                                                                                                                                       |
|                  | 309                                                                                                                                                         |



The table below shows the availability of command in each oscilloscope series.

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | yes    |
| SDS1000A                   | yes    |
| SDS1000CML+/CNL+/DL+/E+/F+ | yes    |
| SDS2000X                   | yes    |
| SDS1000X                   | yes    |
| SDS1000X-E                 | no     |



Obsolete **VERT\_POSITION | VPOS** Command/Query DESCRIPTION The VERT\_POSITION command adjusts the vertical position of the specified FFT trace on the screen. It does not affect the original offset value obtained at acquisition time. The VERT\_POSITION? query returns the current vertical position of the specified FFT trace. **COMMAND SYNTAX** <trace>:VERT\_POSITION <offset> <trace>:={TA,TB,TC,TD} <offset>:= -20\*DIV to 20\*DIV. Note: If there is no unit (V/mV/uV) added, it defaults to be V. If you set the offset to a value outside of the legal range, the center value is automatically set to the nearest legal value. Legal values are affected by the Scale setting. QUERY SYNTAX <trace>:VERT\_POSITION? **RESPONSE FORMAT** <trace>:VERT\_POSITION <offset> **EXAMPLE** The following command shifts FFT Trace A (TA) upwards by +3 divisions relative to the position. When the scale of FFT is 1 V. Command message: TA:VPOS 3V **RELATED COMMANDS** FFTP

Note:



The table below shows the availability of command in each oscilloscope series.

| Model                      | Valid? |
|----------------------------|--------|
| SDS1000CFL                 | yes    |
| SDS1000A                   | yes    |
| SDS1000CML+/CNL+/DL+/E+/F+ | yes    |
| SDS2000X                   | yes    |
| SDS1000X                   | yes    |
| SDS1000X-E                 | no     |



# **Programming Examples**

This chapter gives some examples for the programmer. In these examples you can see how to use VISA or sockets, in combination with the commands described above to control the oscilloscope. By following these examples, you can develop many more applications.

- VISA Examples
  - VC++ Example
  - VB Example
  - MATLAB Example
  - LabVIEW Example
  - C# Example
- Examples of Using Sockets
  - Python Example
  - C Example
- Common Command Examples
  - Read Waveform Data (WF) Example
  - Screen Dump (SCDP) Example



### **VISA Examples**

#### VC++ Example

Environment: Win7 32-bit, Visual Studio.

**Description:** Use National Instruments VISA to control the device with USBTMC or TCP/IP access. Perform a write and read operation.

#### Steps:

- 1. Open Visual Studio, create a new VC++ win32 project.
- 2. Set the project environment to use the NI-VISA library. There are two ways to use NI-VISA, static or automatic:
  - a. Static:

Find the files visa.h, visatype.h, visa32.lib in the NI-VISA installation path, copy them to your project, and add them into the project. In the projectname.cpp file, add the follow two lines: #include "visa.h"

#pragma comment(lib,"visa32.lib")

b. Automatic:

Set the .h file include directory, the NI-VISA install path, in our computer we set the path is: C:\Program Files\IVI Foundation \VISA\WinNT\include. Set this path to: project->properties->C/C++ ->General->Additional Include Directories. See the picture below:

| U | USBINC_WriteRead Property Pages                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                      |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ç | onfiguration: Active (Debu                                                                                                                                                                                                                                                                                                                                                          | ig)                                                                                                                                                                                                                                                                                                                  |  |
|   | <ul> <li>Configuration Properti<br/>General<br/>Debugging</li> <li>C/C++</li> <li>General<br/>Optimization<br/>Preprocessor<br/>Code Generation<br/>Language<br/>Precompiled Hea<br/>Output Files<br/>Browse Informat<br/>Advanced<br/>Command Line</li> <li>Linker</li> <li>Browse Information</li> <li>Build Events</li> <li>Custom Build Step</li> <li>Web Deployment</li> </ul> | Additional Include Directorie C:\Program Files\IVI Foundation\VISA<br>Resolve #using References<br>Debug Information Format Frogram Database for Edit & Continue<br>Suppress Startup Banner Yes (/nologo)<br>Warning Level Level 3 (/T3)<br>Detect 64-bit Portability Iss Tes (/Tp64)<br>Treat Warnings As Errors No |  |
|   | <                                                                                                                                                                                                                                                                                                                                                                                   | Additional Include Directories<br>Specifies one or more directories to add to the include path; use semi-<br>colon delimited list if more than one. (/I[path])                                                                                                                                                       |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                     | OK Cancel Apply Help                                                                                                                                                                                                                                                                                                 |  |

Set lib path and set lib file:



Set lib path: the NI-VISA install path, in our computer we set the path is: C:\Program Files\IVI Foundation\VISA\WinNT\lib\msc. Set this path to project->properties->Linker->General->Additional Library Directories: as shown in the pictures below.

| milguration. Active webug.                                                                | Circle Place Place                                    | Configuration manager                |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|
| Configuration Properti                                                                    | Output File                                           | \$ (OutDir)/USBINC_TriteEead.exe     |
| General                                                                                   | Show Progress                                         | Not Set                              |
| Debugging                                                                                 | Version                                               |                                      |
| C/C++                                                                                     | Enable Incremental Linking                            | Tes (/INCREMENTAL)                   |
| Linker                                                                                    | Suppress Startup Banner                               | No                                   |
| 🜩 General                                                                                 | Ignore Import Library                                 | No                                   |
| Input                                                                                     | Register Output                                       | No                                   |
| Debugging                                                                                 | Additional Library Directorie                         | C:\Program Files\IVI Foundation\VISA |
| Command Line<br>Browse Information<br>Build Events<br>Custom Build Step<br>Web Deployment |                                                       |                                      |
|                                                                                           | <b>Output File</b><br>Override the default output fil | e name. (/OUT:[file])                |

Set lib file:project->properties->Linker->Command Line->Additional Options: visa32.lib

| USBTMC_WriteRead Prop                                                                                                                                     | erty Pages 🛛 🗙                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Configuration: Active Oeb                                                                                                                                 | ug)   Platform: Active(Win32)   Configuration Manager                                                                                                                                                                                                                                                      |
| Configuration Properti<br>General<br>Debugging<br>C/C++<br>Clinker<br>General<br>Input<br>Debugging<br>System<br>Optimization<br>Embedded IDL<br>Advanced | All Options:<br>/OUT: "Debug/USBTHC_WriteRead.exe" /INCREMENTAL /NOLOGO /DEBUG<br>/FDB: "Debug/USBTHC_WriteRead.pdb" /SUBSYSTEM:CONSOLE /MACHINE:X86<br>kernel32.lib user32.lib gdi32.lib winspool lib comdlg32.lib<br>advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib<br>odbccp32.lib |
| <ul> <li></li></ul>                                                                                                                                       | Additional Options:<br>visa32.lib                                                                                                                                                                                                                                                                          |
|                                                                                                                                                           | OK Cancel Apply Help                                                                                                                                                                                                                                                                                       |

Include visa.h file in the projectname.cpp file:

#include <visa.h>



```
3. Coding:
    a. USBTMC:
    IntUsbtmc_test()
    {
    /* This code demonstrates sending synchronous read & write commands */
    /* to an USB Test & Measurement Class (USBTMC) instrument using
                                                                      */
    /* NI-VISA
                            */
    /* The example writes the "*IDN?\n" string to all the USBTMC
                                                                 */
                                                                 */
    /* devices connected to the system and attempts to read back
                                                         */
    /* results using the write and read functions.
    /* The general flow of the code is */
    /* Open Resource Manager
                                    */
                                                       */
    /* Open VISA Session to an Instrument
    /* Write the Identification Query Using viPrintf */
    /* Try to Read a Response With viScanf */
    /*
      Close the VISA Session
                                  */
    ViSession defaultRM;
    ViSession instr:
    ViUInt32 numInstrs;
    ViFindList findList;
    ViUInt32 retCount;
    ViUInt32 writeCount:
    ViStatus status:
    Char instrResourceString[VI_FIND_BUFLEN];
    Unsignedcharbuffer[100];
    Charstringinput[512];
    Int i;
    /** First we must call viOpenDefaultRM to get the manager
    * handle. We will store this handle in defaultRM.*/
    status=viOpenDefaultRM (&defaultRM);
    if (status<VI_SUCCESS)
    {
    printf ("Could not open a session to the VISA Resource Manager!\n");
    returnstatus;
```

316



```
}
/* Find all the USB TMC VISA resources in our system and store the number of resources in the
                                */
system in numInstrs.
status = viFindRsrc (defaultRM, "USB?*INSTR", &findList, &numInstrs, instrResourceString);
if (status<VI_SUCCESS)
printf ("An error occurred while finding resources.\nHit enter to continue.");
fflush(stdin);
getchar();
viClose (defaultRM);
returnstatus;
}
/** Now we will open VISA sessions to all USB TMC instruments.
* We must use the handle from viOpenDefaultRM and we must
* also use a string that indicates which instrument to open. This
* is called the instrument descriptor. The format for this string
* can be found in the function panel by right clicking on the
* descriptor parameter. After opening a session to the
* device, we will get a handle to the instrument which we
* will use in later VISA functions. The AccessMode and Timeout
* parameters in this function are reserved for future
* functionality. These two parameters are given the value VI NULL.*/
for (i=0; i<numInstrs; i++)</pre>
{
if (i> 0)
{
viFindNext (findList, instrResourceString);
}
status = viOpen (defaultRM, instrResourceString, VI_NULL, VI_NULL, &instr);
if (status<VI_SUCCESS)
{
printf ("Cannot open a session to the device %d.\n", i+1);
continue:
}
```

/\* \* At this point we now have a session open to the USB TMC instrument.

\* We will now use the viPrintf function to send the device the string "\*IDN?\n",

317



```
* asking for the device's identification. */
char * cmmand ="*IDN?\n";
status = viPrintf (instr, cmmand);
if (status<VI_SUCCESS)
{
printf ("Error writing to the device %d.\n", i+1);
status = viClose (instr);
continue;
}
/** Now we will attempt to read back a response from the device to
* the identification query that was sent. We will use the viScanf
* function to acquire the data.
* After the data has been read the response is displayed.*/
status = viScanf(instr, "%t", buffer);
if (status<VI_SUCCESS)
{
printf ("Error reading a response from the device %d.\n", i+1);
}
else
{
printf ("\nDevice %d: %*s\n", i+1,retCount, buffer);
}
status = viClose (instr);
}
/** Now we will close the session to the instrument using
* viClose. This operation frees all system resources.
                                                                   */
status = viClose (defaultRM);
printf("Press 'Enter' to exit.");
fflush(stdin);
getchar();
return 0;
}
b. TCP/IP:
intTCP_IP_Test(char *pIP)
{
                                              318
```



```
char outputBuffer[VI_FIND_BUFLEN];
ViSession defaultRM, instr;
ViStatus status:
ViUInt32 count;
ViUInt16 portNo;
/* First we will need to open the default resource manager. */
status = viOpenDefaultRM (&defaultRM);
if (status<VI_SUCCESS)
{
printf("Could not open a session to the VISA Resource Manager!\n");
}
/* Now we will open a session via TCP/IP device */
charhead[256] ="TCPIP0::";
chartail[] ="::INSTR";
charresource [256];
strcat(head,pIP);
strcat(head,tail);
status = viOpen (defaultRM, head, VI_LOAD_CONFIG, VI_NULL, &instr);
if (status<VI_SUCCESS)
{
printf ("An error occurred opening the session\n");
viClose(defaultRM);
}
status = viPrintf(instr, "*idn?\n");
status = viScanf(instr, "%t", outputBuffer);
if (status<VI_SUCCESS)
{
printf("viRead failed with error code: %x \n",status);
viClose(defaultRM);
}
else
{
printf ("\ndata read from device: %*s\n", 0,outputBuffer);
}
status = viClose (instr);
status = viClose (defaultRM);
                                             319
```



```
printf("Press 'Enter' to exit.");
fflush(stdin);
getchar();
return 0;
}
```



#### **VB** Example

Environment: Windows7 32-bit, Microsoft Visual Basic 6.0

**Description:** The function of this example: Use the NI-VISA, to control the device with USBTMC and TCP/IP access to do a write and read.

#### Steps:

- 1. Open Visual Basic, and build a standard application program project.
- 2. Set the project environment to use the NI-VISA lib: Click the Existing tab of Project->Add Module, search the visa32.bas file in the "include" folder under the NI-VISA installation path and add the file, as shown in the figure below:

| Add Module                           |                      |       | ? 🛛      |
|--------------------------------------|----------------------|-------|----------|
| New Exist:                           | ing                  |       |          |
| Look in:                             | 🗀 include            | • • • | b 💣 🎟 -  |
| vise32. bas<br>vpptype. ba           | 12                   |       |          |
| File name:                           | visa32. bas          |       | Open (0) |
| Files of type:                       | Basic Files (*. bas) | •     | Cancel   |
|                                      |                      |       | Help (H) |
| Don't show this dialog in the future |                      |       |          |

- 3. Coding:
  - a. USBTMC:

Private Function Usbtmc\_test() As Long

- ' This code demonstrates sending synchronous read & write commands
- ' to an USB Test & Measurement Class (USBTMC) instrument using
- ' NI-VISA
- ' The example writes the "\*IDN?\n" string to all the USBTMC
- ' devices connected to the system and attempts to read back
- ' results using the write and read functions.
- ' The general flow of the code is
- Open Resource Manager



- ' Open VISA Session to an Instrument
- ' Write the Identification Query Using viWrite
- ' Try to Read a Response With viRead
- ' Close the VISA Session

Const MAX\_CNT = 200

Dim defaultRM As Long Dim instrsesn As Long **Dim numInstrs As Long Dim findList As Long** Dim retCount As Long Dim writeCount As Long Dim status As Long Dim instrResourceString As String \* VI\_FIND\_BUFLEN Dim buffer As String \* MAX\_CNT Dim i As Integer ' First we must call viOpenDefaultRM to get the manager ' handle. We will store this handle in defaultRM. status = viOpenDefaultRM(defaultRM) If (status < VI\_SUCCESS) Then Debug.Print "Could not open a session to the VISA Resource Manager!" Usbtmc\_test = status ExitFunction End If

' Find all the USB TMC VISA resources in our system and store the

' number of resources in the system in numInstrs.

status=viFindRsrc(defaultRM,"USB?\*INSTR",findList,numInstrs,instrResourceString)

If (status < VI\_SUCCESS) Then

Debug.Print "An error occurred while finding resources."

viClose (defaultRM)

Usbtmc\_test = status

Exit Function

End If

' Now we will open VISA sessions to all USB TMC instruments.

322



```
'We must use the handle from viOpenDefaultRM and we must
' also use a string that indicates which instrument to open. This
' is called the instrument descriptor. The format for this string
' can be found in the function panel by right clicking on the
' descriptor parameter. After opening a session to the
' device, we will get a handle to the instrument which we
' will use in later VISA functions. The AccessMode and Timeout
' parameters in this function are reserved for future
' functionality. These two parameters are given the value VI NULL.
For i = 0 To numInstrs
If (i > 0) Then
status = viFindNext(findList, instrResourceString)
End If
     status = viOpen(defaultRM, instrResourceString, VI_NULL, VI_NULL, instrsesn)
If (status < VI_SUCCESS) Then
Debug.Print "Cannot open a session to the device ", i + 1
GoTo NextFind
End If
```

```
' At this point we now have a session open to the USB TMC instrument.
```

'We will now use the viWrite function to send the device the string "\*IDN?",

```
' asking for the device's identification.
```

```
status = viWrite(instrsesn, "*IDN?", 5, retCount)
```

```
If (status < VI_SUCCESS) Then
```

Debug.Print "Error writing to the device."

- status = viClose(instrsesn)
- GoTo NextFind

#### End If

' Now we will attempt to read back a response from the device to

' the identification query that was sent. We will use the viRead

' function to acquire the data.

' After the data has been read the response is displayed.

status = viRead(instrsesn, buffer, MAX\_CNT, retCount)

If (status < VI\_SUCCESS) Then

Debug.Print "Error reading a response from the device.", i + 1

323



Else Debug.Print i + 1, retCount, buffer End If status = viClose(instrsesn) Next i

Now we will close the session to the instrument using
viClose. This operation frees all system resources.
status = viClose(defaultRM)
Usbtmc\_test = 0
End Function

b. TCP/IP:

Private Function TCP\_IP\_Test(ip As String) As Long Dim outputBuffer As String \* VI\_FIND\_BUFLEN Dim defaultRM As Long Dim instrsesn As Long Dim status As Long Dim count As Long

' First we will need to open the default resource manager.
status = viOpenDefaultRM (defaultRM)
If (status < VI\_SUCCESS) Then
Debug.Print "Could not open a session to the VISA Resource Manager!"
TCP\_IP\_Test = status
Exit Function
End If</pre>

' Now we will open a session via TCP/IP device status = viOpen(defaultRM, "TCPIP0::" + ip + "::INSTR", VI\_LOAD\_CONFIG, VI\_NULL, instrsesn) If (status < VI\_SUCCESS) Then Debug.Print "An error occurred opening the session" viClose (defaultRM) TCP\_IP\_Test = status Exit Function




# End If

```
status = viWrite(instrsesn, "*IDN?", 5, count)

If (status < VI_SUCCESS) Then

Debug.Print "Error writing to the device."

End If

status = viRead(instrsesn, outputBuffer, VI_FIND_BUFLEN, count)

If (status < VI_SUCCESS) Then

Debug.Print "Error reading a response from the device.", i + 1

Else

Debug.Print "read from device:", outputBuffer

End If

status = viClose(instrsesn)

status = viClose(defaultRM)

TCP_IP_Test = 0

End Function
```



# MATLAB Example

Environment: Windows7 32-bit, MATLAB R2010b

**Description:** The function of this example: Use the NI-VISA, to control the device with USBTMC or TCP/IP access to do a write and read.

# Steps:

- 1. Open MATLAB, and modify the current directory. In this demo, the current directory is modified to D:\USBTMC\_TCPIP\_Demo.
- 2. Click File->New->Script in the Matlab interface to create an empty M file.
- 3. Coding:
  - a. USBTMC:

function USBTMC\_test()

% This code demonstrates sending synchronous read & write commands

% to an USB Test & Measurement Class (USBTMC) instrument using

% NI-VISA

%Create a VISA-USB object connected to a USB instrument vu = visa('ni','USB0::0xF4EC::0xEE38::0123456789::INSTR');

%Open the VISA object created fopen(vu);

%Send the string "\*IDN?",asking for the device's identification. fprintf(vu,'\*IDN?');

```
%Request the data
outputbuffer = fscanf(vu);
disp(outputbuffer);
```

```
%Close the VISA object
fclose(vu);
delete(vu);
clear vu;
end
```



b. TCP/IP:

function TCP\_IP\_test( IPstr )
% This code demonstrates sending synchronous read & write commands
% to an TCP/IP instrument using NI-VISA

%Create a VISA-TCPIP object connected to an instrument %configured with IP address. vt = visa('ni',['TCPIP0::',IPstr,'::INSTR']);

%Open the VISA object created fopen(vt);

%Send the string "\*IDN?",asking for the device's identification. fprintf(vt,'\*IDN?');

%Request the data outputbuffer = fscanf(vt); disp(outputbuffer);

```
%Close the VISA object
fclose(vt);
delete(vt);
clear vt;
end
```



# LabVIEW Example

Environment: Windows7 32-bit, LabVIEW 2011

**Description:** The functions of this example: use the NI-VISA, to control the device with USBTMC and TCP/IP access to do a write and read.

# Steps:

- 1. Open LabVIEW, create a VI file.
- 2. Add controls. Right-click in the **Front Panel** interface, select and add **VISA resource name**, error in, error out and some indicators from the Controls column.
- Open the Block Diagram interface. Right-click on the VISA resource name and you can select and add the following functions from VISA Palette from the pop-up menu: VISA Write, VISA Read, VISA Open and VISA Close.
- 4. The connection is as shown in the figure below:



5. Select the device resource from the VISA Resource Name list box and run the program.



| VISA resource name                    |                               |
|---------------------------------------|-------------------------------|
| <sup>I</sup> USBO:::0xF4EC::0xEE38::0 | D123456789::INSTR             |
| Read buffer                           |                               |
| Siglent Technologies, SDS             | 1204X-E, 0123456789, 7.6.1.15 |
| Return count                          |                               |
| 52                                    |                               |
| error in (no error)                   | error out                     |
| status code                           | status code                   |
| <ul> <li>✓ ⊕ ₄₀</li> </ul>            | <b>d</b>                      |
| source                                | source                        |
|                                       |                               |
|                                       |                               |
|                                       |                               |

In this example, the VI opens a VISA session to a USBTMC device, writes a command to the device, and reads back the response. After all communication is complete, the VI closes the VISA session.

- Communicating with the device via TCP/IP is similar to USBTMC. But you need to change VISA Write and VISA Read Function to Synchronous I/O. The LabVIEW default is asynchronous I/O. Right-click the node and select Synchronous I/O Mod>>Synchronous from the shortcut menu to write or read data synchronously.
- 7. The connection is as shown in the figure below:



8. Input the IP address and run the program.



| IP address                   |                             |
|------------------------------|-----------------------------|
| 10.11.25.232                 |                             |
| Read buffer                  |                             |
| Siglent Technologies, SDS120 | D4X-E, 0123456789, 7.6.1.15 |
| Return count                 |                             |
| 52                           |                             |
| error in (no error)          | error out                   |
| status code                  | status code                 |
| source                       | source                      |



# C# Example

Environment: Windows7 32-bit, Visual Studio

**Description:** The functions of this example: use the NI-VISA, to control the device with USBTMC or TCP/IP access to do a write and read.

# Steps:

- 1. Open Visual Studio, create a new C# project.
- Add References. Add NationalInstruments.Common.dll and NationalInstruments.VisaNS.dll to the project. (Notice: you must install the .NET Framework 3.5/4.0/4.5 Languages support when you install the NI-VISA.)

| Component Name                    | Version     | Runtime    | Path ^            |
|-----------------------------------|-------------|------------|-------------------|
| msdatasrc                         | 7.0.3300.0  | v1.0.3705  | d:\Program        |
| msddsImp                          | 7.0.3300.0  | v1.1.4322  | C:\Program        |
| msddsp                            | 7.0.3300.0  | v1.1.4322  | C:\Program        |
| National Instruments Common       | 13.0.35.190 | v2.0.50727 | D:\Program        |
| National Instruments Common Nativ | 13.0.35.190 | v2.0.50727 | D:\Program        |
| National Instruments VisaNS       | 13.0.35.167 | v2.0.50727 | D:\Program        |
| NationalInstruments.MStudioCLM    | 13.0.35.190 | v2.0.50727 | D:\Program        |
| NationalInstruments.NiLmClientDLL | 13.0.35.190 | v2.0.50727 | D:\Program        |
| NgenInstaller                     | 1.0.0.0     | v2.0.50727 | C:\Program ▼<br>▶ |

3. Coding:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using NationalInstruments.VisaNS;

```
namespace TestVisa
```

{

class Program

{



```
static void Main(string[] args)
{
   // Find all the USBTMC resources
   string[]
   usbRsrcStrings=ResourceManager.GetLocalManager().FindResources("USB?*INST
   R");
   if (usbRsrcStrings.Length <= 0)
   {
      Console.WriteLine("Can not find USBTMC Device!");
      return;
   }
   //Choose the first resource string to connect the device.
   //You can input the address manually
   //USBTMC:
   //MessageBasedSession
   mbSession=(MessageBasedSession)ResourceManager.GetLocalManager().Open("
   USB0::0xF4EC::0xEE38::0123456789::INSTR");
   /TCP IP:
   //MessageBasedSession
   mbSession=(MessageBasedSession)ResourceManager.GetLocalManager().Open("
   TCPIP0::192.168.1.100::INSTR");
   MessageBasedSession
   mbSession=(MessageBasedSession)ResourceManager.GetLocalManager().Open(u
   sbRsrcStrings[0]);
   mbSession.Write("*IDN?");
   string result = mbSession.ReadString();
   mbSession.Dispose();
   Console.WriteLine(result);
}
```



}

}

# **Examples of Using Sockets**

Socket communication is a basic communication technology in computer network. It allows applications to communicate through the standard network protocol mechanism built by network hardware and operation system.

This method is a two-way communication between the instrument and the computer through a fixed port number.

Note that SCPI strings are terminated with a "\n" (new line) character.

# Python Example

Python has a low-level networking module that provides access to the socket interface. Python scripts can be written for sockets to do a variety of test and measurement tasks.

Environment: Windows 7 32-bit, Python v2.7.5

Description: Open a socket, send a query, and repeat this loop for 10 times, finally close the socket.

Below is the code of the script:

#!/usr/bin/env python

#-\*- coding:utf-8 -\*-

#-----

#-----

# The short script is a example that open a socket, sends a query,

# print the return message and closes the socket.

import socket # for sockets

import sys # for exit

import time # for sleep

#-----

remote\_ip = "10.11.13.32" # should match the instrument's IP address

port = 5025 # the port number of the instrument service

count = 0

def SocketConnect():



```
try:
    #create an AF_INET, STREAM socket (TCP)
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
  except socket.error:
     print ('Failed to create socket.')
    sys.exit();
  try:
    #Connect to remote server
    s.connect((remote_ip , port))
     info = s.recv(4096)
    print (info)
  except socket.error:
     print ('failed to connect to ip ' + remote_ip)
  return s
def SocketQuery(Sock, cmd):
  try :
    #Send cmd string
     Sock.sendall(cmd)
    time.sleep(1)
  except socket.error:
    #Send failed
     print ('Send failed')
    sys.exit()
  reply = Sock.recv(4096)
  return reply
def SocketClose(Sock):
  #close the socket
  Sock.close()
  time.sleep(.300)
```

def main(): global remote\_ip global port global count



# Body: send the SCPI commands \*IDN? 10 times and print the return message

```
s = SocketConnect()
```

```
for i in range(10):
```

```
qStr = SocketQuery(s, b'*IDN?')
print (str(count) + ":: " + str(qStr))
```

count = count + 1

SocketClose(s)

input('Press "Enter" to exit')

```
if __name__ == '__main__':
```

proc = main()



# C Example

```
int MySocket;
if((MySocket=socket(PF_INET,SOCK_STREAM,0))==-1)
{
    exit(1);
}
struct in_addr
{
    unsigned long s_addr;
};
struct sockaddr_in
{
    short int sin_family; // Address family
    unsigned short int sin_port; // Port number
    struct in_addr sin_addr; // Internet address
    unsigned char sin_zero[8]; // Padding
};
struct sockaddr_in MyAddress;
// Initialize the whole structure to zero
memset(&MyAddress,0,sizeof(struct sockaddr_in));
// Then set the individual fields
MyAddress.sin_family=PF_INET; // IPv4
MyAddress.sin_port=htons(5025); // Port number used by most instruments
MyAddress.sin_addr.s_addr=inet_addr("169.254.9.80"); // IP Address
```

# // Establish TCP connection

```
if(connect(MySocket,(struct sockaddr*)&MyAddress,sizeof(struct sockaddr_in))==-1)
{
    exit(1);
}
// Send SCPI command
```

```
if(send(MySocket,"*IDN?\n",6,0)==-1)
{
```



exit(1);

}

```
// Read response
char buffer[200];
int actual;
if((actual=recv(MySocket,&buffer[0],200,0))==-1)
{
    exit(1);
}
buffer[actual]=0; // Add zero character (C string)
printf("Instrument ID: %s\n",buffer);
```

# // Close socket

```
if(close(MySocket)==-1)
{
    exit(1);
}
```



# **Common Command Examples**

This section lists the programming instances of common commands.

Environment: Windows 7 32-bit, Python v3.4.3, pyvisa-1.7, Matplotlib-1.5.1

## Note:

When using the visa library, you should pay attention to the following settings:

1. Set the I/O buffer size.

I.E. For the command "WF", the read buffer size depends on the number of waveform points. When it needs to read in segments, the size of each segment is vary from the models.

2. Set the timeout value.

The timeout value is related to the network speed or USB transmission speed. Please evaluate by yourself. The initial value is generally 2s.

# Read Waveform Data (WF) Example

import visa import pylab as pl

# def main():

```
_rm = visa.ResourceManager()
sds = _rm.open_resource("USB0::0xF4EC::0xEE38::0123456789::INSTR")
sds.write("chdr off")
vdiv = sds.query("c1:vdiv?")
ofst = sds.query("c1:ofst?")
tdiv = sds.query("tdiv?")
sara = sds.query("sara?")
sara_unit = {'G':1E9,'M':1E6,'k':1E3}
for unit in sara_unit.keys():
```



```
if sara.find(unit)!=-1:
       sara = sara.split(unit)
       sara = float(sara[0])*sara_unit[unit]
       break
  sara = float(sara)
 sds.timeout = 30000 #default value is 2000(2s)
  sds.chunk_size = 20*1024*1024 #default value is 20*1024(20k bytes)
  sds.write("c1:wf? dat2")
  recv = list(sds.read_raw())[15:]
  recv.pop()
  recv.pop()
  volt_value = []
  for data in recv:
     if data > 127:
       data = data - 256
     else:
       pass
     volt_value.append(data)
  time_value = []
  for idx in range(0,len(volt_value)):
     volt_value[idx] = volt_value[idx]/25*float(vdiv)-float(ofst)
     time_data = -(float(tdiv)*14/2)+idx*(1/sara)
     time_value.append(time_data)
  pl.figure(figsize=(7,5))
  pl.plot(time_value,volt_value,markersize=2,label=u"Y-T")
  pl.legend()
  pl.grid()
  pl.show()
if __name__=='__main__':
  main()
```

# Read Waveform Data of Digital Example

import visa



```
import pylab as pl
def get_char_bit(char,n):
  return (char >> n) & 1
def main():
  _rm = visa.ResourceManager()
  sds = _rm.open_resource("USB0::0xF4EC::0xEE38::0123456789::INSTR")
  sds.write("chdr off")
  tdiv = sds.query("tdiv?")
  sara = sds.query("di:sara?")
  sara_unit = {'G':1E9,'M':1E6,'k':1E3}
  for unit in sara_unit.keys():
     if sara.find(unit)!=-1:
       sara = sara.split(unit)
       sara = float(sara[0])*sara_unit[unit]
       break
  sara = float(sara)
  sds.timeout = 30000 #default value is 2000(2s)
  sds.chunk_size = 20*1024*1024 #default value is 20*1024(20k bytes)
  sds.write("d0:wf? dat2")
  recv = list(sds.read_raw())[16:]
  recv.pop()
  recv.pop()
  volt_value = []
  data =bytearray(recv)
  for char in data:
     for i in range(0,8):
       volt_value.append(get_char_bit(char,i))
  print(len(volt_value))
  time_value = []
  for idx in range(0,len(volt_value)):
     time_data = -(float(tdiv)*14/2)+idx*(1/sara)
     time_value.append(time_data)
```



```
pl.figure(figsize=(7,5))
pl.ylim(-1,2)
pl.plot(time_value,volt_value,markersize=2,label=u"Y-T")
pl.legend()
pl.grid()
pl.show()
```

```
if __name__=='__main__':
```

main()

# Screen Dump (SCDP) Example

```
import visa
```

# def main():

```
_rm = visa.ResourceManager()
sds = _rm.open_resource("USB0::0xF4EC::0xEE38::0123456789::INSTR")
sds.chunk_size = 20*1024*1024 #default value is 20*1024(20k bytes)
sds.timeout = 30000 #default value is 2000(2s)
file_name = "F:\\SCDP.bmp"
sds.write("SCDP")
result_str = sds.read_raw()
f = open(file_name,'wb')
f.write(result_str)
f.flush()
f.close()
```

```
main()
```

if \_\_name\_\_=='\_\_main\_\_':

Then you can open the file as shown below:







# Index

# A

ACQUIRE\_WAY, ACQW, Command/Query, 28 ARBWAVE, ARWV, Command, 276 ARM\_ACQUISITION, ARM, Command, 25 ATTENUATION, ATTN, Command/Query, 41 AUTO\_CALIBRATE, ACAL, Command/Query, 292 AUTO\_SETUP, ASET, Command, 39 AUTO\_TYPESET, AUTTS, Command/Query, 293 AVERAGE\_ACQUIRE, AVGA, Command/Query, 30

# В

BANDWIDTH\_LIMIT, BWL, Command/Query, 42 BUZZER, BUZZ, Command/ Query, 179 B<n>:DCCN, Command, 68 B<n>:DCIC, Command, 62 B<n>:DCLN, Command, 70 B<n>:DCSP, Command, 64 B<n>:DCUT, Command, 66

# С

CAL?, Query, 178 COMM\_HEADER, CHDR, Command/Query, 23 COMM\_NET, CONET, Command/Query, 180 COUNTER, COUN, Command/Query, 294 COUPLING, CPL, Command/Query, 43 CURSOR\_AUTO, CRAU, Command, 295 CURSOR\_MEASURE, CRMS, Command/Query, 52 CURSOR\_SET, CRST, Command/Query, 54 CURSOR\_TYPE, CRTY, Command/Query, 56 CURSOR\_VALUE?, CRVA?,Query, 57 CUSTOM, CUS, Command/Query, 80 CSV\_SAVE, CSVS, Command/Query, 296 CYMOMETER, CYMT, Query, 114



#### D

DATE, Command/Query, 299 DCPA, Command, 61 DCST, Command/Query, 60 DEFINE, DEF, Command/Query, 96 DIGITAL\_CHANNEL, DGCH, Command/Query, 73 DIGITAL\_STATE, DGST, Command/Query, 74 DIGITAL\_THR, DGTH, Command/Query, 75 DI:SWITCH, DI:SW, Command/Query, 77 DOT\_JOIN, DTJN, Command/Query, 83

#### Е

EduMode, EMOD, Command/Query, 182

## F

FFT\_CENTER, FFTC, Command/Query, 102 FFT\_FULLSCREEN, FFTF, Command/Query, 104 FFT\_POSITION, FFTP, Command/Query, 105 FFT\_SCALE, FFTS, Command/Query, 107 FFT\_TDIV?, FFTT?, Query, 109 FFT\_UNIT, FFTU, Command/Query, 110 FFT\_WINDOW, FFTW, Command/Query, 111 FFT\_ZOOM, FFTZ, Command/Query, 300 FILTER, FILT, Command/Query, 301 FILTER, FILT, Command/Query, 302 FRAME\_SET, FRAM, Command, 89 FRAME\_TIME?, FTIM?, Query, 91

#### G

GRID\_DISPLAY, GRDS, Command/Query, 84

#### Н

HOR\_MAGNIFY, HMAG, Command/Query, 187 HOR\_POSITION, HPOS, Command/Query, 189 HISTORY\_LIST, HLST, Command/Query, 93

344



## HISTORY\_MODE, HSMD, Command/Query, 92

## L

IDN?, Query, 19 INTENSITY, INTS, Command/Query, 85 INR?, Query, 175 INVERT\_SET, INVS, Command/Query, 50/98

## Μ

MEASURE\_DELY, MEAD, Command/Query, 116 MEASURE\_CLEAR, MEACL, Command, 129 MEASURE\_GATEA, MEGA, Command, 131 MEASURE\_GATEB, MEGB, Command, 133 MEASURE\_GATE\_SWITCH, MEGS, Command, 130 MENU, MENU, Command/Query, 86 MEMORY\_SIZE, MSIZ, Command/Query, 31 MATH\_VERT\_DIV, MTVD, Command/Query, 99 MATH\_VERT\_POS, MTVP, Command/Query, 101

O OFFSET, OFST, Command/Query, 44 OPC, Command, 20

# Ρ

PANEL\_SETUP, PNSU, Command/Query, 168 PARAMETER\_CLR, PACL, Command, 136 PARAMETER\_CUSTOM, PACU, Command, 119 PARAMETER\_VALUE?, PAVA?, Query, 122 PASTAT, Command/Query, 127 PEAK\_DETECT, PDET, Command/Query, 304 PERSIST, PERS, Command/Query, 307 PERSIST\_SETUP, PESU, Command/Query, 87 PF\_BUFFER, PFBF, Command/Query, 137 PF\_CONTROL, PFCT, Command/Query, 305 PF\_CREATEM, PFCM, Command, 139 PF\_DATEDIS?, PFDD?, Query, 140



PF\_DISPLAY, PFDS, Command/Query, 141 PF\_ENABLE, PFEN, Command/Query, 142 PF\_FAIL\_STOP, PFFS, Command/Query, 143 PF\_OPERATION, PFOP, Command/Query, 145 PF\_SET, PFST, Command/Query, 147 PF\_SOURCE, PFSC, Command/Query, 146 PRODUCT?, PROD?, Query, 277

## R

RCL, Command, 151 RECALL, REC, Command, 308 RECALL\_PANEL, RCPN, Command, 152 REF\_CLOSE, REFCL, Command, 155 REF\_DISPALY, REFDS, Command/Query, 156 REF\_LOCATION, REFLA, Command/Query, 158 REF\_POISITION, REFPO, Command/Query, 159 REF\_SAVE, REFSA, Command, 161 REF\_SCLALE, REFSC, Command/Query, 162 REF\_SET, REFS, Command/Query, 309 REF\_SOURCE, REFSR, Command/Query, 164 RST, Command, 21

## S

SAMPLE\_NUM?, SANU?, Query, 35 SAMPLE\_RATE?, SARA?, Query, 33 SAMPLE\_STATUS?, SAST?, Query, 32 SAV, Command, 166 SCREEN\_DUMP, SCDP, Query, 149 SCREEN\_SAVE, SCSV, Command/Query, 181 SET50, Command, 192 SINXX\_SAMPLE, SXSA, Command/Query, 36 SKEW, Command, 46 STORELIST?, STL?, Query, 278 STOP, Command, 27 STORE\_PANEL, STPN, Command, 171



#### Т

THRESHOLD\_MODE, TSM, Command/Query, 79 TIME\_DIV, TDIV, Command/Query, 184 TRACE, TRA, Command/Query, 47/78 TRCAN:BAUD, Command/Query, 255 TRCAN:CANH, Command/Query, 248 TRCAN:CON, Command/Query, 249 TRCAN:DAT, Command/Query, 254 TRCAN:DATA, Command/Query, 253 TRCAN: ID, Command/Query, 250 TRCAN:IDL, Command/Query, 252 TRIIC: ADDR, Command/Query, 215 TRIIC:ALEN, Command/Query, 222 TRIIC:CON, Command/Query, 213 TRIIC:DAT2, Command/Query, 219 TRIIC:DATA, Command/Query, 217 TRIIC:DLEN, Command/Query, 223 TRIIC:RW, Command/Query, 221 TRIIC:QUAL, Command/Query, 220 TRIIC:SCL, Command/Query, 211 TRIIC:SDA, Command/Query, 212 TRIG COUPLING, TRCP, Command/Query, 193 TRIG\_DELAY, TRDL, Command/Query, 185 TRIG\_LEVEL, TRLV, Command/Query, 193 TRIG\_LEVEL2, TRLV2, Command/Query, 196 TRIG\_MODE, TRMD, Command/Query, 198 TRIG\_PATTERN, TRPA, Command/Query, 200 TRIG\_SELECT, TRSE, Command/Query, 202 TRIG\_SLOPE, TRSL, Command/Query, 207 TRIG\_WINDOW, TRWI, Command/Query, 208 TRLIN:BAUD, Command/Query, 261 TRLIN:CON, Command/Query, 257 TRLIN:DAT2, Command/Query, 260 TRLIN:DATA, Command/Query, 259 TRLIN: ID, Command/Query, 258 TRLIN:SRC, Command/Query, 256



347

TRSPI:BIT, Command/Query, 235 TRSPI:CLK, Command/Query, 224 TRSPI:CLK:EDGE, Command/Query, 225 TRSPI:CLK:TIM, Command/Query, 226 TRSPI:CS, Command/Query, 230 TRSPI:CSTP, Command/Query, 229 TRSPI:DATA, Command, 233 TRSPI:DLEN, Command/Query, 234 TRSPI:MOSI, Command/Query, 227 TRSPI:MISO, Command/Query, 228 TRSPI:NCS, Command/Query, 231 TRSPI:TRTY, Command/Query, 232 TRUART: BAUD, Command/Query, 242 TRUART:BIT, Command/Query, 247 TRUART:CON, Command/Query, 239 TRUART:DATA, Command/Query, 241 TRUART:DLEN, Command/Query, 243 TRUART:QUAL, Command/Query, 240 TRUART:PAR, Command/Query, 244 TRUART:POL, Command/Query, 245 TRUART:RX, Command/Query, 236 TRUART:TRTY, Command/Query, 238 TRUART:TX, Command/Query, 237 TRUART:STOP, Command/Query, 246

U

UNIT, UNIT, Command/Query, 48

## V

VOLT\_DIV, VDIV, Command/Query, 49 VERT\_POSITION, VPOS, Command/Query, 311

W

WAVEFORM?, WF?, Query, 263 WAVEFORM\_SETUP, WFSU, Command/Query, 273 WAVEGENERATOR, WGEN, Command/Query, 279 348

**SIGLENT**<sup>®</sup>

WAVE\_PARA?, WVPR?, Query, 281

# Х

XY\_DISPLAY, XYDS, Command/Query, 37





# Digital Series Oscilloscope

#### About SIGLENT

SIGLENT is an international high-tech company, concentrating on R&D, sales, production and services of electronic test & measurement instruments.

SIGLENT first began developing digital oscilloscopes independently in 2002. After more than a decade of continuous development, SIGLENT has extended its product line to include digital oscilloscopes, function/arbitrary waveform generators, digital multimeters, DC power supplies, spectrum analyzers, isolated handheld oscilloscopes and other general purpose test instrumentation. Since its first oscilloscope, the ADS7000 series, was launched in 2005, SIGLENT has become the fastest growing manufacturer of digital oscilloscopes. We firmly believe that today SIGLENT is the best value in electronic test & measurement.

#### Headquarter:

SIGLENT TECHNOLOGIES CO., LTD. Add: Blog No.4 & No.5, Antongda Industrial Zone, 3rd Liuxian Road, Bao'an District, Shenzhen, 518101, China. Tel: + 86 755 3661 5186 Fax: + 86 755 3359 1582 Email: sales@siglent.com; Website: http://www.siglent.com/ens/

#### USA:

SIGLENT Technologies America, Inc 6557 Cochran Rd Solon, Ohio 44139 Tel: 440-398-5800 Toll Free: 877-515-5551 Fax: 440-399-1211 Email: info@siglent.com Website: www.siglentamerica.com

#### Europe:

SIGLENT TECHNOLOGIES EUROPE GmbH ADD: Liebigstrasse 2-20, Gebaeude 14, 22113 Hamburg Germany Tel: +49(0)-819-95946 Fax: +49(0)-819-95947 Email: info-eu@siglent.com Website: www.siglenteu.com Follow us on Facebook: SiglentTech

